Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки, длина цепи

    Биуретовая реакция является не только качественной, но и количественной. Она позволяет следить за ходом гидролиза белков и устанавливать содержание пептидов в смесях с различной длиной цепи. Значительный вклад в изучение биуретовой реакции и способов ее использования для определения строения белков внесли Н. И. Гаврилов,. М. И. Плехан и К- Т. Порошин. [c.504]


    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]

    Главное различие между цепями белка и полиэтилена или полиэтилен-терефталата (дакрона) заключается в том, что в молекуле белка не все боковые группы одинаковы. У фибриллярных белков определенная повторяющаяся последовательность боковых групп придает конкретному белку-кератину или коллагену-вполне конкретные механические свойства. Глобулярные белки имеют еще более сложное строение. Эти молекулы обычно содержат от 100 до 500 аминокисло г, полимеризованных в одну длинную цепь, и полная последовательность аминокислотных остатков в каждой молекуле одного глобулярного белка одинакова. Эти остатки могут быть углеводородными, кислыми, основными, нейтральными или полярными. Свертывание белковой цепи в компактную глобулярную моле- [c.313]

    Содержание азота в нефтях значительно ниже, чем серы. Обычно оно колеблется от сотых до десятых долей процента и редко превышает 0,5—0,6%. Вероятно, низкое содержание в нефтях азота и его носителей — азоторганических соединений — объясняется тем обстоятельством, что единственным источником его попадания в нефть является нефтематеринское органическое вещество, которое в процессе своей геохимической истории на пути превращения в нефть медленно, но неуклонно обедняется азотом, Азоторганические соединения вполне справедливо поэтому рассматривать как остаточные или промежуточные соединения в длинной цепи геохимических превращений в нефть таких азотсодержащих органических веществ растительного и животного происхождения, как белки, алкалоиды и другие азотистые соединения. [c.349]

    С развитием методов выделения, очистки и анализа белков в течение первых трех десятилетий этого века выяснилось два существенных факта. Оказалось, что каждый белок состоит из полипептидной цепи определенной длины, причем у разных белков длина цепи меняется от нескольких десятков до нескольких сотен аминокислотных остатков. Выяснилось также, что в каждом белке содержатся характерные для него относительные количества двадцати стандартных аминокислот. Когда эти факты были установлены, то было сделано следующее предположение индивидуальная особенность каждого типа белка зависит от того, сколько аминокислот и какие именно аминокислоты составляют его полипептидную цепь. [c.41]


    Как вы узнали в главе о пище, белки - это полимеры (длинные цепи) аминокислот. В теле найдено всего около 20 аминокислот. (Белки всех жи- [c.450]

    Полимерные соединения могут быть природными или синтетическими. К природным высокомолекулярным соединениям принадлежат натуральный каучук, целлюлоза, белки. Макромолекула натурального каучука представляет собою длинную цепь, состоящую в среднем из 5000 звеньев изопрена, сохранивших по одной двойной связи, которая в звеньях полимера находится в положении 2—3  [c.9]

    Белки представляют собой биологические молекулы с длинными цепями, построенными из аминокислот. Белковая цепь имеет специфическое расположение, которое удерж1[вается водородными связями между группами N—Н и С=0, расположенными вдоль цепи (см. разд. 11.5, ч. Г). При денатурации белка, например при варке яйца, повышение тепловой энергии вызывает разрыв водородных связей, и регулярное расположение групп вдоль белковой цепи нарушается. Какие знаки имеют величины ДЯ и Д5 в процессе денатурации белка  [c.197]

    Характерной особенностью конформационных переходов в молекулах белков и нуклеиновых кислот является их так называемая кооперативность. Это означает, что конформационное изменение в одном из сегментов макромолекулы вызывает аналогичные конформационные изменения соседних сегментов и в конечном итоге — всей макромолекулы в целом. Кооперативность растет с увеличением длины цепи макромолекулы. Превращения такого рода имеют огромное значение [c.638]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Синтетическое волокно. Полиамидные смолы. Волокнистые материалы животного происхождения (шелк, шерсть и др.) являются белковыми веществами. Их молекулы построены из длинных цепей аминокислот, связанных между собой по типу амидов. Из растворимых белков можно приготовить искусственные волокна, пропуская под давлением растворы белков (например, казеин) через фильеры. Получаемые нити последующей обработкой формальдегидом переводят в нерастворимое в воде состояние. [c.397]

    В период 1900—1910 гг. немецкому химику Эмилю Фишеру (1852— 1919) удалось получить убедительные данные, свидетельствующие о том, что аминокислоты в белках соединены в длинные цепи, называемые полипептидными цепями. Так, две молекулы глицина могут соединяться и образовывать двойную молекулу глицилглицина, приведенную на рис. 14.2 при образовании такой молекулы выделяется вода. Возникшая связь называется пептидной связью. Процесс образования [c.391]

    Другой большой класс белков образуют фибриллярные белки. Они выполняют в организме главным образом роль структурных материалов. К их числу относится кератин, входящий в состав кожи, волос, шерсти, ногтей и других роговых тканей. К другому типу фибриллярных белков относится коллаген, находяищйся в сухожилиях, подкожном слое и роговице глаз к фибриллярным относятся белки шелка и тканей насекомых. Белки, углеводы и липиды (жиры с длинными цепями и жирные кислоты) играют роль строительных материалов в любых живых организмах. [c.313]

    Белки — высокомолекулярные природные соединения, важнейшая составная часть всех живых организмов. В молекулах Б. сотни, тысячи остатков а-аминокислот соединены друг с другом пептидными связями (—СО—NH—) в длинные цепи  [c.24]


    Одним из наиболее интересных и обнадеживающих результатов априорного расчета двух низкомолекулярных белков явилось совпадение почти с экспериментальной точностью значений двугранных углов ф, у, и и X (или координат атомов), рассчитанных и найденных опытным путем Безусловно, это достойный и эффективный финал длительного исследования. Допуская достаточность и справедливость всех положений использованной структурной теории, применимость для белков механической модели и эффективность разработанного для пептидов расчетного метода, трудно было все-таки надеяться на количественную близость теоретических и экспериментальных данных. Предполагалось, что на окончательных результатах существенным образом скажется ряд условностей в описании невалентных взаимодействий, в учете влияния среды и, по-видимому, главное, параметризации эмпирических функций. Неизбежным, особенно вначале, представлялось быстро прогрессирующее с увеличением длины цепи накопление ошибок, которое в конечном счете должно было сделать расчет природных полипептидов (даже при правильности всех исходных теоретических посылок) малоперспективным, подобно тому, как пока еще оказывается малоэффективным синтез белков на основе методов органической химии по сравнению с биосинтезом и методами генной инженерии. Почему же этого не произошло в расчете пространственных структур двух рассмотренных белков Случайно ли получено [c.468]

    При исследовании субстратов с длинной цепью [149] было установлено, что некоторые нативные белки устойчивы к действию фермента, в то время как белок с развернутыми цепями, а также окисленный или денатурированный белок легко гидролизуется. Например, цинковый комплекс инсулина почти не расщепляется ферментом, но удаление цинка облегчает ступенчатый гидролиз. В этом случае гидролиз не затрагивает дисульфидных мостиков. Разделенные цепи А и Б окисленного инсулина легко гидролизуются. Аминокислотный анализ свидетельствует о гидролизе всех связей в цепи- А, в то время как более медленный гидролиз цепи Б позволил установить последовательность первых шести остатков в этой цепи. [c.236]

    Хотя химически нуклеиновые кислоты резко отличаются от белков, они сходны с ними в одном в молекулах всех нуклеиновых кислот имеется одинаковая (по природе, а не по величине) длинная цепь, являющаяся скелетом молекулы, а к этому скелету прикреплены различные группы, природа и последовательность расположения которых специфичны для каждой нуклеиновой кислоты. [c.1062]

    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    ПЕПТИДЫ, природные или синт. в-ва, молекулы к-рьи построены из остатков г -аминокислот, соединенных между собой пептидными связями. По числу этих остатков разл чают дипеигиды, трипептиды, тетрапептиды и т. д. П. с длинной цепью наз. полипептидами, с цепью средне длины — олигопептидами, с замкнутой цепью — циклопептидами. Полипептиды достаточно большой мол. массы, способные к организации однозначной пространств, структуры, относят к белкам. К П. близки депсыпептпды. [c.428]

    Неограниченная сложность строения и многообразие молекул органических соединений. Достаточно назвать природные биополимеры — белки, полисахариды, синтетические полимеры — капрон, лавсан, полиэтилен и т. д., вета-мины, гормоны и особенно нуклеиновые кислоты, молекулярная масса которых доходит до 41 о . Эта особенность органических соединений обусловлена способностью атома углерода образовывать бесконечно длинные цепи [c.12]

    У РНК статистич. сегмент гораздо короче (ок. 100 А), что вполне согласуется с рассмотренной выше вторичной структурой РНК. Для ДНК была установлена связь между гидродинамич. свойствами, характери-стич. вязкостью, константой седиментации и мол. массой. В большинстве препаратов ДНК, получаемых из клеток бактерий или высших организмов, мол. масса достигает 10 —3-10 . По-видимому, в процессе освобождения ДНК от белка длинные цепи рвутся случайным образом на подобные фрагменты. Разрывы вызываются гидродинамич. сдвиговыми силами или градиентом скорости. [c.192]

    Дигидролипоилтрансацетилаза, кофактором является липоевая кислота (ЛК) и HS-KoA. Остаток ЛК присоединен к апофермен-ту путем образования пептидной связи между карбоксильной группой ЛК и -аминогруппой лизина белка (длинная цепь из 13 атомов углерода). Липоевая кислота может быть в окисленной или восстановленной форме. HS-KoA (HS-кофермент А) состоит из витамина Вз (пантотеновая кислота), соединенного пептидной связью с тио-этаноламином и эфирной связью с 3 -фосфоаденозин-5 -дифосфатом. [c.152]

    БЕЛКИ (протеины) — высоксг-.-оле-кулярные природные соединения, являющиеся продуктами поликонденсации сотен и даже тысяч молекул а-амино-кислот. Б.— важнейшая составная часть всех живых организмов. В молекулах Б. остатки -аминокислот, соединенные друг с другом пептидными связями (—СО—NH—), образуют длинные цепи  [c.39]

    В результате такой конденсации образуется дипептид, состоящий из двух аминокислотных остатков. Реакцию можно продолжить дальще при этом образуются высщ е пептиды и, наконец, белки. Образующаяся амидная, или пептидная, связь (—СО—ЫН—) характерна для соединения аминокислотных остатков в короткие или длинные цепи и является одним из главных факторов, определяющих физические и химические свойства пептидов и белков. [c.190]

    Молекулы белков и нуклеатов очень велики они содержат тысячи атомов и весьма сложны по химическому составу, поскольку они выполняют в живом организме множество специализированных функций. Хотя белки и нуклеаты весьма различны по химическому строению, их объединяет одна общая особенность — основу структуры их молекул составляют довольно длинные цепи атомов в молекулах имеются и боковые группы, которые сами могут быть короткими цепочками, но главной особенностью всегда остается очень длинная осевая цепь из сотен и тысяч атомов. [c.65]

    Белки, которые, по всей видимости, регулируют химическую и механическую деятельность живого организма, в свою очередь находятся под контролем нуклеатов. Молекулы нуклеатов, как и молекулы белков, состоят из очень длинных цепей, но по химическому составу они коренным образом отличаются от молекул белков. [c.67]

    I Механизм сорбции нуклеиновых кислот и их производных на оксиапатите, ио-видимому, во многом аналогичен механизму сорбции кислых белков. Вместо карбоксилов во взаимодействии с ионами кальция на поверхности сорбента участвуют остатки фосфатов полинуклеотидной цепи. Для моно- и олигонуклеотидов наблюдается явная зависимость силы сорбции от длины цеии (из-за многоточечной сорбции Мононуклеотиды в присутствии 1 мМ фосфатного буфера задерживаются на сорбенте слабо, а основания и нуклеозиды не задерживаются вовсе. Ди- и тринуклеотиды сорбируются гораздо прочнее решающую роль играют здесь фосфаты. Любопытно, что сказывается не только их число, но и расположение) Наиример, нуклеозидтрифосфаты сорбируются заметно прочне ё чем тринуклеотиды. Небольшие олигонуклеотиды хорошо сорбируются в 1 мМ фосфатном буфере, но относительно легко элюируются (0,02—0,0.3 М фосфатным буфером). орбция самих нуклеиновых кислот гораздо более прочна ]Я1 Элюцию осуществляет фосфатны буфер с концентрацией 0,12—0,25 М Размер высокомолекулярной нуклеиновой кислоты сказывается мало. По-видимому, достаточно отдаленные участки длинной цепи полинуклеотида благодаря их гибкости элюируются одновременно и независимо друг от друга. [c.229]

    Между полипептидом и белком трудно провести четкую границу. Белками называют полипептиды с молекулярной массой не ниже некоторой минимальной величины, скажем 5000. Более удачным следует считать различие, проводимое на уровне структуры полимера, более сложном, чем его первичная структура — простая аминокислотная последовательность. Полипептиды представляют собой линейные довольно гибкие молекулы, а длинные цепи белков свернуты в клубок или иную структуру, нередко с четко обозначенными углублениями внутри ее или на поверхности. Далее, многие белки-ферменты могут иметь в своем составе так называемые простетические группьт, связанные с полиамидной цепью. [c.401]

    Ступенчатое наращивание пептида с применением второй фазы впервые проведено Меррифилдом на примере твердофазного пептидного синтеза (разд. 2.2.7.1). При реакциях в гетерогенной фазе вероятность встречи реагирующих партнеров гораздо ниже, чем в гомогенном растворе. Для получения высокой степени превращения требуется значительный избыток ацилирующего средства. Преимуществом этой стратегии является простота технических операций и связанная с этим возможность автоматизации. Трудные операции очистки промежуточных веществ традиционного синтеза заменяются простыми процессами фильтрования и промывания. Однако на этом пути однородный продукт синтеза получается только в том случае, если каждая реакция в гетерогенной фазе протекает практически количественно. Несмотря на большие избытки карбоксикомпонента, использование которых чревато опасностью N-ацилирования пептидной связи, полное превращение на каждой стадии в настоящее время недостижимо. На практике средний выход на одну стадию 95—99%, что недостаточно для синтеза длинных пептидов или белков. Средние выходы на одну стадию и полные выходы (в зависимости от длины цепи) приведены в табл. 2-10. Как показывает практика, короткоцепочечные пептиды или их аналоги длиной до -15 аминокислотных остатков могут быть получены твердофазным методом. Трудности при синтезе небольших белков наглядно демонстрируются данными табл. 2-10. Еще хуже сказывается накопление не- [c.214]

    Используя технику клонирования ДНК [599] и анализа нуклеотидных последовательностей [600], Наканнши и сотр. foOl] установили нуклеотидную последовательность мРНК-предшественника. Нумерация аминокислотной последовательности положительная справа от N-концевой аминокислоты АКТГ, в левую сторону отсчет идет со знаком минус. Белок-предшественник содержит 8 пар основных аминокислот и одну двойную пару -Lys-Lys-Arg-Arg. В этих местах происходит ферментативное расщепление белка с образованием различных пептидов. /3-Липотропин образует С-концевую область и, вероятно, отщепляется непосредственно от предшественника. Общая схема ферментативного расщепления и вид фрагментации к настоящему времени еще не установлены. В отличие от известных последовательностей /3-липотропинов свиньи и овцы /3-липотропин теленка содержит между 35 и 36 аминокислотными остатками два дополнительных (-Ala-Glu-) этим объясняются различные длины цепей липотропинов (см. схему). Анализ на ЭВМ аминокислотной последовательности отрицательной части предшественника дал интересный результат между позициями —55 и —44 найдена аминокислотная последовательность -Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asn-Arg-Phe-Gly-, имеющая большое сходство с а- н /3-МСГ. Так как в области аминокислотной последовательности предшественника от —111 до —105 присутствует еще один участок, имеющий структурное сходство с МСГ-пептидами, предполагается существование серии дупликаций гена, аналогично имеющей место в случае иммуноглобулинов. О [c.242]

    Таким образом, согласно бифуркационной теории, ни один из этапов механизма спонтанного свертывания белка, включая окончательное построение его биологически активной трехмерной структуры, не содержит селекции практически бесконечного множества мыслимых конформационных состояний аминокислотной последовательности. Следовательно, если описанный механизм адекватен реальному процессу, т.е. если бифуркационная теория верна, то разработанный на ее основе метод расчета вообще не встречается с проблемой поиска глобального минимума энергии на многомерной потенциальной поверхности. Содержание конформационного анализа в этом случае распадается на две также непростые задачи. Одна из них заключается в оптимизации составляющих белковую цепь олигопептидных участков в их свободном состоянии при вариации всех возможных комбинаций знамений двугранных углов вращения каждого отдельного фрагмента. Цель решения этой задачи состоит в идентификации конформационно жестких и лабильных участков аминокислотной поверхности. Вторая задача включает анализ невалентных взаимодействий тех и других и многоступенчатую минимизацию энергии с постепенным увеличением длины цепи и раскрепощением конформационных параметров жестких участков. В конечном счете будет получена количественная оценка конформационных возможностей всей белковой молекулы и выявлена ее глобальная нативная трехмерная структура. Этот вывод справедлив, однако, лишь в принципе, а реально ни та, ни другая задача не поддаются решению без введения дополнительных положений о структурной организации нативной конформации белка. Предоставленная бифуркационной теорией возможность перехода от расчета целой белковой цепи к расчету отдельных фрагментов и далее анализу комбинаций их пространственных форм в огромной степени упростила проблему, но не сделала ее практически разрешимой. Причина та же - множественность локальных минимумов энергии на потенциальной поверхности, правда, теперь уже не всей белковой цепи, а ее конформационно жестких и лабильных участков, которые могут состоять из 10-12 аминокислотных остатков. Как известно, независимому и строгому анализу поддаются [c.248]

    При учете локализации S-S-мостика конформационный анализ цистин-содержащего фрагмента природного олигопептида или белка может быть ограничен рассмотрением его состояний только с замкнутыми формами основной цепи. Значительное сокращение объема вычислительных работ не сопровождается при этом снижением требований к строгости рещения задачи. В этом случае для пептида определенной длины необходимо располагать набором соответствующих циклических структур с известными геометрическими и энергетическими характеристиками. Он может быть получен путем количественной оценки стерической и энергетической предрасположенности всех возможных конформаций модельного пептида того же размера ys -(Ala) 2 ys" к образованию дисульфидной связи. В работах В.З. Спасова и Е.М. Попова [106, 107] оценены конформационные возможности модельных олигопептидов с числом остатков л от двух до шести. При большей длине цепи с концевыми остатками ys предложенный метод становится малоэффективным. [c.326]

    Реагенты, подобные кф1цертрированным кислотам, которые неизбирательно атакуют все пептидные связи, имеют лишь ограниченное значение для расщепления полипептидов с длинной цепью, так как- состав гидролизата по мере удлинения цепи значительно усложняется. Общие вопросы гидролиза полипептидов подробно рассмотрены в обзоре Сэнджера [266]. Следует отметить, что до начала работы по разделению полученной в результате гидролиза смеси пептидов и аминокислот необходимо, чтобы продолжительность гидролиза исследуемого белка или полипептида была оптимальной. [c.177]

    С помощью химических данных, а также результатов рентгеноструктурного анализа и электронной микроскопии было показано, что в тропомиозине [213, 223, 224) и в легком меромиозине [2151 а-спирали параллельны. По-видимому, это относится и к а-кера-тину, поскольку длинная цепь а-кератина может быть полностью синтезирована и стабилизирована, прежде чем сможет образоваться суперспираль из антипараллельных а-спиралей. Напротив, в глобулярных белках гемеритрине [216, 217] и оболочке вируса табачной мозаики [180, 218] упаковка спиралей антипараллельна. [c.100]


Смотреть страницы где упоминается термин Белки, длина цепи: [c.262]    [c.136]    [c.248]    [c.152]    [c.214]    [c.94]    [c.223]    [c.515]    [c.117]    [c.248]    [c.185]    [c.188]    [c.456]    [c.506]    [c.209]    [c.54]   
Биофизическая химия Т.1 (1984) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Длина цепи



© 2024 chem21.info Реклама на сайте