Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность обзоры

    Обзор методов определения коэффициентов теплопроводности в зернистом слое с движущейся газовой (жидкой) фазой [c.113]

    Дан обзор существующих теорий теплопроводности газов при атмосферном давлении, обзор имеющихся формул для подсчета теплопроводности газов, жидкостей и их смесей. Даются обобщающие зависимости для теплопроводности газов при атмосферном давлении, ее зависимости от давления и температуры. Приведены достоверные данные по теплопроводности газов, жидкостей и их смесей для широких пределов температур и давлений. [c.2]


    Большое число работ убедительно демонстрирует отличие свойств жидкости, находящейся вблизи поверхности, от свойств в ее объеме [14, 36, 87, 114, 466—475]. Так, обнаружена аномалия диэлектрических свойств [469, 470], эффект ск ачкообразно-го изменения электропроводности [470], изменение вязкости в зависимости от расстояния до твердой- стенки [114, 471, 472], появление предельного напряжения сдвига жидкости при приближении к поверхности твердого тела [14, 473, 474]. Для набухающего в водных растворах 1 а-замещенного монтмориллонита обнаружена оптическая анизотропия тонких прослоек воды [36] найдено изменение теплоемкости смачивающих пленок нитробензола на силикатных поверхностях [475]. Установлено отличие ГС от объемной жидкости по растворяющей способности, температуре замерзания, теплопроводности, энтальпии. В. Дрост-Хансеном опубликованы обзоры большого числа работ, содержащие как прямые, так и косвенные свидетельства структурных изменений в граничных слоях [476—478]. В качестве косвенных доказательств автор приводит, в первую очередь, существование изломов на кривых температурной зависимости ряда свойств поверхностных слоев. Эти температуры отвечают, согласно Дрост-Хансену, разной перестройке структуры ГС. Широко известны также работы Г. Пешеля [479] по исследованию ГС жидкостей (и, прежде всего, воды) у поверхности кварца в присутствии ряда электролитов. [c.170]

    ОБЗОР ФОРМУЛ ДЛЯ ВЫЧИСЛЕНИЯ ТЕПЛОПРОВОДНОСТИ РАСТВОРОВ [c.323]

    Для полного расчета реактора требуется знание начальных и граничных условий, таких как характер теплопередачи у стенок реактора или заданные температуры стенки. Для получения численных решений необходимы экспериментальные данные по коэффициенту трения, эффективной теплопроводности и эффективной диффузии, или по коэффициентам тепло- и массопередачи. Обзор данных для неподвижного и кипящего слоев твердых частиц приведен ниже. [c.245]

    Удельная поверхность носителя, необходимая для катализаторов окисления этилена, очень низка по сравнению с удельной поверхностью носителей большинства других катализаторов. В разных обзорах приводят значения от менее 1,0 [37, 54] до 0,03—0,06 м2/г [55]. Предпочтительна структура с крупными открытыми макропорами. Хотя в некоторых патентах упоминаются носители с большой удельной поверхностью, например молекулярные сита, их применимость весьма сомнительна. Сочетание низкой теплопроводности катализаторов, имеющих развитую поверхность, с трудностью, возникающей при диффузии продукта из пор, обычно является причиной низкой эффективности носителей с высокой удельной поверхностью. Носители формуют в шарики диаметром 6—20 мм, цилиндры или кольца. Объем пор составляет около 0,5 см /г, а средний диаметр пор 20 мкм. [c.234]


    Книга представляет собой монографию по определению теплопроводности газов, жидкостей и их смесей. Дан обзор существующих экспериментальных методов измерения теплопроводности. Описаны основные типичные экспериментальные установки для измерения теплопроводности. [c.2]

    В настоящей книге дан обзор теорий и формул, предложенных для вычисления теплопроводности разреженных газов, обзор имеющихся формул для подсчета теплопроводности жидкостей. Даются обобщающие зависимости для теплопроводности газов при атмосферном давлении. [c.3]

    Книга представляет собой критический обзор различных расчетных методов для ограниченного перечня свойств газов и жидкостей — критических и других характеристических свойств чистых компонентов, Р—V—Т и термодинамических свойств чистых компонентов и смесей, давлений паров и теплот фазовых переходов, стандартных энтальпий образования, стандартных энергий образования Гиббса, теплоемкостей, поверхностного натяжения, вязкости, теплопроводности, коэффициентов диффузии и параметров фазового равновесия. Для демонстрации степени надежности того или иного метода приводятся таблицы сравнения расчетных данных с экспериментальными. Большинство методов проиллюстрировано примерами, В меньшей степени сравнения и примеры характерны для методов, которые, с точки зрения авторов, менее пригодны и ценны для практического использования. По мере возможности в тексте приведены рекомендации относительно наилучших методов определения каждого свойства и наиболее надежных мето-дий экстраполяции и интерполяции имеющихся данных. [c.10]

    ОБЗОР ФОРМУЛ ДЛЯ ПОДСЧЕТА ТЕПЛОПРОВОДНОСТИ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ СМЕСЕЙ ХИМИЧЕСКИ НЕ РЕАГИРУЮЩИХ ГАЗОВ [c.233]

    Для определения — коэффициента теплоотдачи, отнесенного к единице раздела фаз, предложены [12] критериальные уравнения, подобные уравнениям, рекомендуемым для определения Ргп- Подробный обзор работ по теплопроводности и теплопередаче в неподвижном зернистом слое приведен в монографии [12]. [c.216]

    Актуальность исследований эффективной теплопроводности зернистых систем обусловлена широким распространением их в природе й широким использованием в различных отраслях промышленности, в том числе и в химико-технологических процессах. Изучению процесса теплообмена в зернистых системах посвящено обширное количество работ, обзор которых опубликован в [1, 2, 3, 4] и др. [c.23]

    Леман [17] опубликовал критический обзор различных методов расчета коэффициента теплопроводности Ясм газовой смеси. [c.394]

    Теплопроводность, скорость ультразвука (обзор). [c.406]

    В гл. 6 и 7 идет речь о давлений паров и теплотах парообразования чистых веществ, теплоемкости, теплоте образования и энтропии, Гл. 8 содержит обзор методов расчета и корреляции фазового равновесия. В гл. 9—11 описываются методы расчета вязкости, теплопроводности и коэффициентов диффузии. Поверхностное натяжение кратко рассмотрено в гл. 12. [c.18]

    Как видно из приведенного обзора, ко времени VI Международной конференции был накоплен обширный экспериментальный материал о теплопроводности воды и водяного пара. Однако, как показал анализ, в некоторых областях опытные данные различных авторов значительно отличались друг от друга. В связи с этим VI Международная конференция не смогла принять согласованную скелетную таблицу коэффициента [c.40]

    Обзоры данных о теплопроводности жидкого водорода содержатся в работах [162, ПО, 241, 364]. В табл. 4.24 приведены значения теплопроводности жидкого и газообразного водорода в характерных точках. Эти данные получены, как правило, путем графической интерполяции. Данные о теплопроводности жидкого нормального водорода и пара-водорода на линии насыщения и при разных давлениях приведены в табл, 4.25, 4,27, 4,28. [c.193]

    Физические свойства углей. Дан систематизированный обзор литературы по физическим свойствам углей, включающий описание методов определения кажущегося удельного веса, электропроводности, теплопроводности, теплоемкости, показателей преломления и отражения света, абсорбции и диффракции рентгеновских лучей. [c.8]

    В последние годы опубликовано несколько обзоров, обобщающих различные методы расчета теплопроводности смесей [12, 38, 45, 48, 88, 93, 110, 111, 121, 157, 163, 169, 185, 188]. [c.438]

    Определение величины поверхности необходимо при всех количественных исследованиях скоростей гетерогенных процессов. Поверхность между двумя несмешивающимися жидкими фазами обычно может быть точно определена на основании простых геометрических соображений, тогда как определение величины поверхности твердых веществ часто оказывается затруднительным из-за ее сложной формы. Для определения величины поверхности твердых тел применяется целый ряд методов, в том числе два метода с применением радиоактивных индикаторов. Один из этих методов, называемый методом поверхностного обмена, основан на гетерогенной реакции обмена между ионами, находящимися на поверхности твердого вещества, и ионами в растворе (см. гл. 1). Другой метод, а именно метод эманирования, основан на выделении радиоактивных атомов инертного газа через поверхность твердого вещества (см. гл. IX). Обзор исследований, посвященных этим методам, приведен в статьях Цименса (24, 214]. Здесь не будет дано описания других методов, не основанных на применении радиоактивности (измерения с помощью микроскопа, использования явлений адсорбции газов, адсорбции красителей, поляризации электродов, определения скорости растворения, проницаемости, теплоты смачивания, оптической интерференции, диффракции рентгеновских лучей, теплопроводности), обзор которых был сделан Брунауэром [В82]. [c.254]


    Очевидно, что структура зернистого слоя, его порозность, должны оказывать значительное влияние на теплопроводность. Предложено много теоретических и экспериментальных зависимостей, определяющих эффективный коэффициент теплопроводности >.оэ как функцию структуры слоя и теплопроводное ги обеих фаз зернистого слоя обзор работ в этой области, выполненных до 1959 года, дан в монографии Чудновского [3]. Позже появилось большое число исследований, связанных в основном с изучением теплопровтздности смесей, композиционных и пористых материалов, засыпок, порошков [4, 5]. Обзор некоторых зависимостей для зернистого слоя дан в [6]. [c.104]

    В рассмотренных примерах решались задачи теплопроводности в полуограничен-ных телах с разными допущениями относительно теплофизических свойств твердого тела. Хотя решения, которые получены в этих примерах, являются весьма полезными приближениями и ими следует пользоваться при анализе проблемы теплопроводности, во многих реальных случаях плавления и отверждения полимеров положение осложняется тем, что одновременно имеют место как фазовые переходы, так и температурная зависимость теплофизических свойств. В подобных случаях приходится обращаться к численным методам, в частности к методу конечных разностей, рассмотренному в следующем разделе. Дополнительные преимущества численных методов заключаются в том, что они могут применяться при сложной геометрии и различных граничных условиях. Тем не менее многочисленные аналитические решения задач теплопроводности при различных конфигурациях теплового потока и разных граничных условиях вошли в классические труды [9, 10], и хотя большинство решений получено для постоянных теплофизических характеристик, они очень полезны для анализа процессов переработки полимеров. Обзор этих решений и математических приемов, с помощью которых они были получены, выходит за рамки дан- [c.265]

    Различные типы детекторов не могут обеспечить одинаковый отклик (площадь пика н т. д.) лри работе с одним и тем же соедннеинем невозможно также получить одинаковый отклик для эквимолекулярных количеств различных соединений, исиользуя один а тот же детектор. Поэтому проведение количественного aHavTOsa требует обязательной калибровки и определения калибровочных коэффициентов для любого детектора (в особенности для детектора по теплопроводности) и любой анализируемой смеси. Многие калибровочные коэффициенты для детекторов по теплопроводиости и пламенно-ионизационных детекторов опубликованы (см,, например, [И, а 36]). Обзор методов детектирования компонентов анализируемых смесей с использованием ионизационных детекторов см. 37]. Данные о различных типах детекторов, приведенные в табл. 2U, заимствованы из [1,в, г 14, а, б]. [c.408]

    ТсплопроЕОдность жидкостей. Для исследования теплопроводности жидкостей используют некоторые методы, применимые для твердых тел, и ряд специфических методов. В литературе н.меется ряд обзоров, посвященных исследованию теилопроводио-С ги жидкостей [43, 53]. [c.453]

    Интересно отметить, что Деблер [23] получил описанный выше режим неустойчивости, рассматривая неустойчивость в случае равномерно распределенного в жидкости источника энергии q ". Результирующее распределение температуры (в режиме теплопроводности) оказывается параболическим, что представляет собой хорошую аппроксимацию зависимости плотности от температуры для чистой воды вблизи 4°С (R = 0,b). При этом было рассмотрено несколько типов граничных условий. Эти и другие исследования подробно описываются в обзоре [48]. [c.223]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Самостоятельный интерес расчеты СН слоистых модификаций нитрида углерода получают при попытках интерпретации необычных свойств азот-углеродных пленок. Хотя до сих пор состав получаемых пленок достаточно далек от идеального ( 3N4), значителен градиент концентраций по толщине пленок, а их морфология существенно зависит от способа синтеза, ряд исследований (см. обзор [11]) позволил установить, что эти пленки обладают сравнительно высокими механическими параметрами, ценными адгезионными свойствами. Отмечается их значительная теплопроводность, термическая устойчивость, перспективные протекторные и электрофизические свойства, что позволяет предложить эти пленки в ряде технологических схем в качестве эффективных конкурентов углеродных пленок. [c.75]

    В газовой хроматографии используют более 50 типов детекторов. Описание работы многих из них представлено в ряде обзоров и книг [38—46]. Практически все они могут быть условно разделены на неионизационные и ионизационные. Детекторы также подразделяются на недеструктивные и деструктивные, универсальные и селективные, причем большинство ионизационных детекторов являются селективными и деструктивными, а большинство неионизационных — универсальными и недеструктивными. Деструктивным детектором является тот, в котором более чем 1% анализируемых компонентов разлагается или реагирует с образованием других соединений. Ионизационным детектором называют такой детектор, в котором анализируемые соединения под действием различных внешних факторов (р-излучение, захват электрона, водородное пламя, УФ-свет, высокочастотный заряд и др.) превращаются в отрицательные или положительные ионы, которые собираются на электродах и регистрируются с помощью усилителя и вторичного регистрирующего прибора. Большинство отечественных и зарубежных фирм, выпускающих газохроматографическую аппаратуру, включают в состав прибора не более 5—6 детекторов, причем обычно 2—3 из них постоянно установлены на хроматографе, а остальные прилагаются в качестве сменных или поставляемых по специальным заявкам. К основным детекторам, как правило, относят детектор по теплопроводности (ДТП), детектор по плотности (ДП) детектор термоионный (ДТИ) детектор электронного захвата (ДЭЗ) и др. [c.149]

    Таким образом, изображение на зкране индикатора ОИ сканирующего радиометра содержит кривую распределения температур по выбранной плоскости сканирования РТ, импульс указания центра ИЦ и линию калиброванного уровня температуры УТ. На рис. 5.16 в качестве примера приведены диаграммы, характеризующие работу прибора. Рис. 5.16, а показывает взаимное расположение источника теплоты ИТ) и объекта контроля КО в виде листа с расслоением РС, заполненным воздухом, имеющим малую теплопроводность по сравнению с материалом КО. По линии АА происходит сканирование. На рис. 5.16, б. в изображены осциллограммы с экрана прибора Термопрофиль ТНР-1 при секторе обзора 80° (рис. 5.16, б) и 10 (рис. 5.16, в). Конструктив- [c.197]

    Математическая теория горения имеет дело с комбинацией уравнений химической кинетики, с одной стороны, теплопроводности и диффузир — с другой. Скорость реакции всегда зависит от температуры существенно нелинейным образом (обычно по закону Аррениуса). Эта нелинейность является важнейшей характерной особенностью явлений горения без нее исчезают критические условия и теряет смысл самое понятие горения. Отсюда следует, что в отличие от многих других разделов прикладной физики, в теории горения полная линеаризация уравнений недопустима. Теория горения имеет дело с дифференциальными уравнениями, в которые искомая функция (температура) входит существенно нелинейным образом, но ее производные входят линейно. Такие уравнения в математике называются квазилинейными. Общие сведения о квазилинейных уравнениях и их приложениях можно найти в обзоре Гельфанда [52]. Один из разделов этого обзора, составленный Баренблатом, содержит прекрасное изложение основ теории горения с чисто математической точки зрения. [c.284]

    Обзор новейших работ по теплопроводности газов сделан в работе Лилея [15]. [c.350]

    Теплопроводность и тепловое расширение. Проблема теплопроводности жидкостей (и в некоторой степени газов) до сих пор остается преимущественно на стадии эмпирического исследования. Ковальчик [1144] дал обзор вопроса и тех уравнений, которыми теплопроводность может быть связана с вязкостью, молярным объемом, температурой плавления и скоростью звука. Сакиадис и Коте [1776, 1777] составили таблицы данных о теплопроводности для ряда соединений и привели функции, которые устанавливают корреляцию между распространением тепла и звука. [c.56]

    В настояще главе подробно описаны лишь часто применяе-.мые в газовой хроматографии детекторы (12 типов детекторов). Наибольшее внимание уделяется рассмотрению новых, еще мало изученных и недостаточно полно освещенных в литературе детекторов. Так как описания работы детекторов теплопроводности и пламенно-ионизационных детекторов встречаются практическ в каждой книге по газовой хроматографии и в каждом обзоре по детекторам, дается лишь более подробное рас-С-мотрение параметров, от которых зависит их стабильная работа и чувствительность. Следует за четить, что пз детекторов, которые представлены в табл. 5, только первые десять выпускаются промышленностью в Советском Союзе или за рубежом. [c.153]

    Заключение. В настоящем обзоре мы попытались представить в систематизированном виде данные по влиянию изотопического состава на различные свойства твёрдых тел — на постоянные кристаллической решётки, упругие свойства, фононы и другие возбуждения кристаллической решётки, на электро- и теплопроводность, на электронную структуру металлов и полупроводников и на фазовые превращения. В большинстве случаев изотопические эффекты малы, но есть обратные примеры, когда, как правило в изотопических смесях, изотопы оказывают сильное влияние на свойства твёрдых тел. Замечательным примером такого изотопического эффекта служит значительное (иногда в десятки раз) подавление теплопроводности диэлектриков и полупроводников. Исключительно высокая теплопроводность изотопически чистых полупроводников имеет хорошие перспективы использования в технике в тех случаях, где имеются большие тепловые нагрузки, например, в алмазных монохроматорах для синхротронного излучения [244] и в микроэлектронике [189, 190]. С точки зрения приложений изотопы кремния и германия находят применение для нейтронного трансмутационного легирования полупроводников [10,245]. Исследуются возможности использования изотонически обогащённого монокристалла кремния для точного определения числа Авогадро [58,59] с целью замены эталона килограмма. [c.95]

    Широкое применение находит Окись бериллия в керамике 280-283 огтлйчающеися высокой теплопроводностью 2 . Химии окиси бериллия посвящены обзоры Будникова и других исследователей Установлено, что в основе структуры метафтор- [c.594]


Смотреть страницы где упоминается термин Теплопроводность обзоры: [c.264]    [c.189]    [c.135]    [c.338]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Обзор методов определения коэффициентов теплопроводности в зернистом слое с движущейся газовой (жидкой) фазой

Обзор опубликованных данных о вязкости и теплопроводности

Обзор формул для вычисления теплопроводности растворов

Обзор формул для подсчета теплопроводности при атмосферном давлении смесей химически не реагирующих газов

Обзоры



© 2025 chem21.info Реклама на сайте