Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газ-носитель в заполненной капиллярной колонке

    В гл. I рассматривался вариант газовой хроматографии, в основе которого лежит селективная адсорбция компонентов разделяемой смеси твердой неподвижной фазой — адсорбентом. В распределительной газовой хроматографии решающим фактором разделения является селективная абсорбция компонентов смеси неподвижной жидкой фазой — абсорбентом. Для локализации неподвижной >йид-кой фазы и придания ей достаточной поверхности ее наносят на зерна твердого носителя, которым заполняется колонка (насадоч-ная колонка), или же на внутренние стенки тонких капилляров (капиллярная колонка). [c.170]


    По первому способу определенную порцию раствора с концентрацией 5-20% в виде пробки продавливают током инертного газа-носителя вдоль всего капилляра под давлением до 30 атм (в зависимости от длины капилляра). При этом на стенках капилляра остается некоторое количество жидкой фазы, которое определяется концентрацией раствора, вязкостью, скоростью потока газа-носителя, смачиваемостью стенок и диаметром капилляра. По второму способу капиллярную колонку заполняют разбавленным 1—2%-ным раствором жидкой фазы в летучем растворителе. После этого закрытый с одной стороны капилляр медленно продвигают через нагретую печь. Летучий растворитель испаряется, и жидкая фаза в виде тонкой пленки 0,1—0,2 мк покрывает стенки капилляра. [c.78]

    Наряду со стандартными модулями и блоками, входящими в это исполнение хроматографа, в термостате / установлен барботер 5, соединенный с испарителем 5. Капиллярная хроматографическая колонка 2 представляет собой пустой капилляр из инертного материала (нержавеющая сталь, стекло, плавленый кварц с внешним полимерным покрытием и др.) внутренним диаметром 0,1—0,5 мм и длиной 2—10 м. Барботер 8 — это стеклянная цилиндрическая емкость, нижняя часть которой перекрыта фильтром 9 нз пористого материала (фильтр Шотта) или заполнена стеклянными шариками для обеспечения большой поверхности массообмена между газом-носителем и легколетучим растворителем, заполняющим верхнюю часть этой емкости. В качестве растворителя могут быть использованы дистиллированная вода, четыреххлористый углерод, муравьиная кислота и другие, к парам которых пламенноионизационный детектор проявляет слабую чувствительность в сравнении с чувствительностью к анализируемым соединениям. Газ-носитель перед поступлением в капиллярную колонку 2 насыщается парами легколетучего растворителя, который образует на внутренних стенках колонки тонкую пленку конденсата, выполняющую роль неподвижной жидкой фазы. [c.111]

    Остановимся сначала на влиянии поверхности твердого носителя на свойства нанесенной на нее неподвижной фазы. При добавлении к белому диатомитовому носителю 0,2—0,3% неподвижной фазы вся поверхность носителя покрывается слоем жидкости. Для образования подобного же монослоя неподвижной фазы на розовых носителях, обладающих большей поверхностью, необходимо нанести 0,5% жидкости. При дальнейшем добавлении неподвижной фазы к носителю параллельно происходят два процесса увеличивается толщина адсорбированного слоя жидкости и заполняются поры носителя. Жидкость, заполняющую поры носителя, называют капиллярной и ее параметры практически адекватны характеристикам чистой жидкости. На свойства жидкости в адсорбированном слое влияет природа поверхности твердого носителя, которая проявляется лишь на сравнительно небольших расстояниях —не более 5 монослоев неподвижной фазы. Например, плотность адсорбированного слоя жидкости выше такого же показателя для чистой жидкости, и что самое важное, коэффициенты распределения жидкость — газ различаются для чистой (капиллярной) и адсорбированной жидкости коэффициент распределения ниже для адсорбированной жидкости, чем для капиллярной вследствие энтропийного эффекта. Последний проявляется вследствие большей плотности адсорбированного слоя жидкости и, соответственно, большего ограничения передвижения и вращения молекул сорбата в плотной среде. При 10—15% неподвижной фазы, нанесенной на носитель, растворимость в адсорбированном слое жидкости может изменить объем удерживания от 5 до 10%. Особенно велико влияние адсорбированного слоя жидкости на значения объема удерживания при использовании колонок с небольшим количеством неподвижной фазы на носителе (менее 5%). Однако для относительных характеристик удерживания влияние адсорбированного слоя жидкости на данные удерживания падает вследствие эффекта компенсации. [c.37]


    Капиллярные колонки — это стеклянные, металлические или пластмассовые трубки ди аметром 0,2—0,5 мм долина их может достигать До 100 м. Их применение повышает эффективность разделения газовой смеси. На внутренней стенке трубки нанесен слой неподвижной жидкой фазы или активного сорбента оксида алюминия, оксида кремния, рафинированной угольной сажи и др. Для. заполнения капиллярных колонок неподвижную жидкую фазу растворяют в легко испаряющемся растворителе. Полученный раствор проталкивают под давлением через капиллярную трубку газом-носителем. После заполнения колонки раствором продол-, жают подавать газ-носитель до полного испарения растворителя. На стенках капиллярных трубок остается тонкий слой неподвижной жидкой фазы. Для нанесения на стенки трубок оксида кремния или оксида алюминия готовят специальные коллоидные растворы и заполняют ими колонки, затем продувают сухим аргоном или другим газом-носителем до полного удаления растворителя. На стенках остается тонкий слой активного сорбента. Отсутствие насадки в капиллярных колонках -позволяет увеличивать скорость потока газа-носителя даже при небольших перепадах давления, а увеличение длины колонки улучшает разделение сложных газовых смесей. [c.210]

    Капиллярную колонку заполняют стационарной жидкой фазой под таким давлением, чтобы обеспечить прохождение раствора по колонке со скоростью 2—3 м в минуту (одна капля раствора, выходящего из колонки за 10—15 с). После выхода из колонки последней капли раствора необходимо резко снизить давление, чтобы обеспечить медленное продувание колонки газом-носителем в течение 4 ч. [c.251]

    Голей разработал также теорию течения газа через капилляр. Поскольку при указанном диаметре капилляра поток имеет ламинарный характер, турбулентная диффузия при разделении отсутствует. Жидкая фаза образует на внутренних стенках капилляра равномерную тонкую пленку, в результате чего существенно уменьшается диффузия вещества в жидкой фазе (следует учесть, что в обычной колонке жидкость заполняет микропоры носителя, образуя столбики разной длины). Поэтому капиллярные колонки отличаются чрезвычайно высокой эффективностью. Число теоретических тарелок в 1 ж колонки достигает 5000, иногда и больше. Размывание пиков в капиллярных колонках обусловлено лишь диффузией в газовой фазе. [c.28]

    Колоночная хроматография отличается тем, что процесс проводят в насадочной или капиллярной хроматографической колонке. В последнем случае метод называют капиллярной хроматографией. Насадочную колонку заполняют сорбентом (насадкой) внутреннюю стенку капиллярной колонки покрывают слоем жидкости или пылью адсорбента (либо пылью адсорбента или носителя, пропитанной жидкостью). [c.30]

    Голей [28], автор первой работы по капиллярным колонкам, описал статический метод нанесения НЖФ. Согласно предложенной им методике, закрытую с одного конца колонку заполняют раствором неподвижной фазы в растворителе и заполненную колонку медленно протягивают через нагреваемую печь, причем в печь колонку вводят сначала открытым концом. Летучий растворитель испаряется из колонки, и на стенках капилляра образуется пленка неподвижной фазы. Когда процесс образования пленки закончится, остатки растворителя удаляют из колонки потоком газа-носителя. Недостаток данного метода — относительная сложность оборудования, кроме того, таким способом нельзя наносить НЖФ на стеклянные капилляры, поскольку требуемую форму колонке придают уже после нанесения НЖФ. [c.192]

    О гомогенности пленки жидкости в капилляре судят по эффективности приготовленной колонки. Известно, что даже при одинаковых качестве исходного материала и методике подготовки колонки перед нанесением приготовить две колонки одинаковой эффективности практически не удается. Некоторые материалы проявляют адсорбционные свойства, что уменьшает не только эффективность колонки, но и фактор емкости. Например, медь вызывает сорбцию, которая проявляется в каталитической активности поверхности колонки. Некоторые неподвижные фазы разлагаются в медных капиллярах даже при 150 °С. По этой причине стеклянные капилляры предпочтительны. Однако, чтобы получить гомогенные пленки, стеклянные капилляры необходимо подвергать специальной обработке перед нанесением НЖФ. Можно, например, протравить внутренние стенки капилляра 17%-ным раствором аммиака при 180°С [61], фторидом [84] или хлоридом водорода. При использовании последних двух соединений стеклянные колонки после обработки заполняют кислым раствором, запаивают с обоих концов и выдерживают некоторое время при повышенной температуре. После этого колонки открывают, промывают и высушивают и затем одним из описанных выше способов наносят НЖФ. Иногда поверхность капиллярной колонки модифицируют. Методика модификации поверхности колонки сходна с методикой модификации поверхности инертного носителя (см. разд. 10.3.2). [c.194]


    Капиллярные колонки можно также заполнить слоем твердого носителя, покрытого неподвижной фазой [19, 29а]. [c.194]

    Насадочные, микронасадочные и капиллярные колонки отличаются друг от друга не только размерами, но и наполнением. Насадочные и микронасадочные колонки заполняются насадкой или набивкой, представляющих собой твердый носитель с нанесен- [c.60]

    В настоящее время широко [гснользуются также капиллярные колонки. Капиллярные трубки изготовлены из металла нли стекла. Внутренний диаметр капиллярных колонок колеблется в пределах 0,25—0,5 мм, длина от 10 до 200 м. В истинных капиллярных колонках неподвижная фаза находится в виде тонкой пленки на внутренних стенках и не заполняет всего объема. Капиллярные колонки имеют эффективность до 1000 теоретических тарелок на метр длины и в комбииацгиг с масс-спектрометрами позволяют анализировать сложные и многокомпонентные смеси. Нижний температурный предел работы всех колонок ограничивается температурой плавления жидкой фазы. Верхний температурный предел работы колонок в основном ограничивается летучестью жидкой фазы и чувствительностью детектора. Вновь приготовленную колонку обычно необходимо выдержать в течение суток в потоке газа-носителя при температуре, которая на 25° выше максимальной рабочей температуры стационарной фазы. [c.299]

    Действительное разделение компонентов смеси достигается в колонке, которая является главной составной частью хроматографа. В связи с этим успех или неуспех какого-либо разделения будет зависеть главным образом от выбора колонки. В газо-жидкостной хроматографии применяются как капиллярные, так и заполненные (или набивные) колонки. Капиллярные колонки представляют собой полые трубки малого диаметра, на стенки которых нанесена тонкая пленка жидкости. Набивные колонки заполняются твердым инертным носителем, на который в виде тонкой пленки нанесена нелетучая жидкость. Трубка колонки может быть изготовлена из стекла, металла или полимерного материала обычно ее скручивают в спираль в соответствии с размерами термостата хро.матографа. [c.49]

    Различают колоночную и плоскостную ОХ. В первом случае анализируемый р-р вводят в колонку, наполненную смесью носителя и осадителя. Выделяют капиллярную ОХ, в к-рой смесью носителя и осадителя заполняют капилляр, [c.413]

    Насадочную колонку заполняют сорбентом. При капиллярной хроматографии адсорбентом или носителем, покрываемым слоем нелетучей жидкости, служит внутренняя стенка колонки. [c.25]

    Принцип метода хорошо иллюстрирует одно из первых устройств подобного рода [27, 28], описанное Фейешем, Энгельгартом и Шаем (рис. 56). С помощью устройства, аналогичного так называемому микродипперу [29], подлежащую разделению пробу в количестве нескольких микролитров вводят в предварительно вакуумированную нагретую камеру объемом 16 мл. Пары пробы заполняют всю камеру, в том числе и поперечное отверстие подвижного штока. Опуская шток, движущийся в тефлоновых уплотнениях, это отверстие переводят в положение, где оно соединяет линию подвода газа-носителя с капиллярной колонкой. Таким образом, количество пара, заполняющее отверстие, объем которого равен 16 мкл, переводится в колонку в виде очень узкой высококонцентрированной зоны. При этом исходная проба подвергается делению в отношении 1 1000. Основная масса пробы остается в камере и люжет анализироваться повторно. Для перехода к анализу нового образца камеру вновь вакуумируют и вводят новую пробу. Преимуществом такого дозатора, помимо удобства и малой ширины начальной зоны, является то, что [c.137]

    В противоположность заполненным колонкам капиллярные колонки были созданы вначале лишь для распределительной газовой хроматографии. Роль стационарной фазы выполняла пленка жидкости, прилипшая к необработанным стенкам капилляра. Эти уже ставшие классическими колонки Голея в дальнейшем мы будем называть импрегнированными капиллярными колонками. В период между 1961 и 1963 гг. наряду с этпми колонками стали известны и другие типы капиллярных колонок. Так, было предложено заполнять капиллярные трубки тонкопористым сорбентом или твердым носителем, пропитанным неподвижной фазой. Трубки, заполненные твердыми частицами, не являются уже открытыми трубками, которые характерны для капиллярных колонок, но из-за малого диаметра этот вид колонок получил название заполненных капиллярных колонок. В противоположность этим заполненным капиллярным колонкам имеются голеееские колонки с большим диаметром, у которых вновь стационарная фаза находится в виде пленки на внутренних стенках трубки, а внутренний диаметр может отличаться примерно на 1 мм от диаметра узких (<0,4 мм) капиллярных колонок. [c.322]

    Суш ественных успехов в применении металлических капилляров и использовании заполненных капиллярных колонок в газо-жидкостной хроматографии добился Вирус (1963). По Вирусу (1963), уже готовую трубку внутренним диаметром 0,5—1,0 заполняли твердым носителем с диаметром зерна 0,09—0,06 а затем наносили неподвижную фазу иродавли-ванием соответствуюш его раствора. Таким методом можно получить хорошее разделение и на колонках с полярной неподвижной фазой, например диоктилсебацинатом. [c.335]

    Колонки ДЛЯ газовой хроматографии могут быть капиллярными и наполненными . Капиллярные колонки представляют собой длинные тонкие трубки, содержащие только одну неподвижную фазу. Наполненные колонки имеют больший диаметр. Их заполняют сорбентом, полученным путем нанесения неподвижной фазы на инертный твердый носитель (например, измельченный огнеупорный кирпич). Аналитические колонки могут иметь длину от 10—15 см до 1—2 км. Наиболее часто применяют колонки длиной от 1,5 до 3—4 м. Для проведения препаративного разделения во избежание чрезмерно больших значений времени удерживания обычно предпочитают колонки умеренной длины (1,5—3,5 м). Хотя существуют приборы, на которых можно работать с колонками очень большого диаметра, обычно удобнее применять для препаративного разделения приборы, снабженные детектором по теплопроводности и имеющие колонки диаметром от 6 до 9 мм. Такие колонки достаточно удобны как для аналитической, так и для препаративной работы. В том случае, если газовый хроматограф имеет детектор, разрушающий пробу (например, пламенноионизационный), то в систему коммуникаций прибора включают делители потока, направляющие меньшую часть пробы к детектору, а остальное — в систему сбора выделенных фракций. [c.458]

    Нанесение неподвижной фазы — наиболее сложная операция в приготовлении капиллярных колонок. Существует два основных способа нанесения — динамический и статический. При первом способе через колонку продавливают раствор неподвижной фазы в виде столбика жидкости, при этом на стенках остается пленка этого раствора. Затем растворитель отгоняют потоком газа-носителя при нагреве капилляра. В статическом методе весь капилляр заполняют раствором неподвижной фазы, один его конец закрывают, а второй медленно вводят в горячую зону, где растворитель испаряется. Считается, что второй метод имеет преимущества, так как поток паров растворителя очищает поверхность капилляра от адсорбированных веществ, в результате чего улучшается смачиваемость к]апилляра неподвижной фазой. Однако непосрёдственное нанесение неподвижных фаз на стеклянные капилляры обычно не дает положительных результатов из-за плохой смачиваемости, в результате чего фаза не растекается в виде тонкой пленки, а собирается в капли. Поэтому перед нанесением [c.119]

    Толстый (100 мкм и более) пористый слой на внутренней стенке капилляра выгоднее всего получать при вытягивании. В исходную стеклянную трубку помещают металлический шип или стержень с проволокой, а оставшееся пространство заполняют адсорбентом или носителем (рис. 3.18). При вытягивании материал трубки нагревается до температуры размягчения и частицы адсорбента или носителя закрепляются на размягченных стенках капилляра. Ранее таким образом получали медные капиллярные колонки. В носитель, помещаемый в вытягиваемый стеклянный капилляр, вводят добавки, способствующие образованию устойчивого и достаточно пористого слоя. Например, к целиту добавляют хлорид лития [80], хотя образующийся при этом слой очень гигроскопичен используется также мелко размолотое легкоплавящееся стекло [34]. Таким способом изготавливают капиллярные колонки со слоем диатомового [c.103]

    Первые методики получения капиллярных колонок с пористым слоем на внутренней поверхности описаны еще Голеем [72]. На первой стадии Голей получал пористый слой, а на второй — проводил динамическое смачивание его неподвижной фазой. Три года спустя Хал аш и Хорват [101, 102] опубликовали разработанный ими метод нанесения слоя адсорбента или носителя на внутреннюю поверхность металлического капилляра с помощью статического смачивания под давлением (разд. 3.5.3). Они заполняли колонку стабильной суспензией адсорбента или предварительно смоченного ею носителя в органическом растворителе высокой плотности (например, в смеси бромметана и тетрахлорметана) и затем испаряли растворитель. При этом внутренняя поверхность капиллярной колонки увеличивалась в 130 раз. Фирма Perkin-Elmer с 1964 г. выпускает капиллярные колонки типа ОКК-ТН (S OT), получаемые по этой методике. [c.105]

    Эттре и Парселл [54] рассмотрели разработанные к настоящему времени способы приготовления капиллярных колонок и провели их сравнительную оценку. Приведем в качестве примера состав суспензии, применяемой для получения колонок типа ОКК-ТН (S OT) 6,5 г носителя (JM-6470-1), 1,5 г кабосила М5, 2,5 г сквалана, 0,2 мл атпета 80, 45,0 мл ацетона и 155,0 мл трифтортрихлорэтана. Этой суспензией заполняют на- [c.105]

    Гаэохроматографическая колонка заполнена сорбентом, представляющим собой твердый носитель, на который нанесена жидкая неподвижная фаза. Суммарный процесс распределения разделяемого вещества (сорбата) между газовой фазой и сорбентом представляет собой сумму, по меньшей мере, трех элементарных сорбционных процессов распределение газ —жидкость, адсорбция на поверхностях раздела жидкость — газ и твердый носитель — жидкость. В капиллярной хроматографии в процессе сорбции участвует поверхность раздела стенки капиллярной колонки — жидкость. Следовательно, при газохроматографическом разделении и при оценке избирательности колонки необходимо учитывать для реальной системы все сорбдион-йые процессы. В первой главе мы ограничимся обсуждением только одного, основного процесса — распределение жидкость— газ. Все остальные сорбционные явления в газохроматографической колонке будут рассмотрены в гл. 3. [c.11]

    Размер зерна адсорбента для микронасадочиых колонок составляет обычно 0,1 мм, а отношение диаметра колонки к диаметру зерна равно 3—5 (для обычных колонок 10—20). В колонке образуется при этом слой сорбента толщиной практически в одно зерно, и для газа-носителя остается лишь один канал, что снижает эффект размывания. Однако, так как ширина канала этих колонок значительна, путь внешней диффузии велик, и величина х. хотя и меньше, чем в капиллярной колонке, но все же значительна. Стеклянную трубку можно заполнять не только [c.59]

    Колонки. В хроматографиадской колонке происходит разделение компонентов смеси. В связи с этим успех или неуспех анализа во зушо-гом зависит от выбора колонки. В газо-жидкостной хроматографии применяют насадочные (набивные) и капиллярные колонки. Насадочные колонки имеют длину 1—20 л , внутренний диаметр 3—Q мм. Их заполняют твердым носителем, на который в виде тонкой пленки наносится жидкая фаза. Капиллярные колонки представляют собой полые трубки малого диаметра (0,2—1,5 мм), на стенки которых нанесена тонкая пленкая жидкой фазы. Трубка колонки может быть изготовлена из стекла, металла или полимерного материала. Трубки обычно скручивают в спираль в соответствии с размерами термостата, при этом отношение диаметра спирали к диаметру колонки должно быть больше 20. [c.134]

    Для практического проведения хроматографического разделения трубку определенной длины и диаметра заполняют твердым, как правило пористым, материалом с подходящим размером зерен, который, собственно, и представляет собой неподвижную фазу или ее носитель. Такие колонки называют насадочными. В колонках иного типа неподвижную фазу наносят по возможности равномерно на стенки капилляра (капиллярные колонки). Подвижная фаза (газ-носитель) подводится к насадочным или капиллярным колонкам под давлением, необходн.мым для поддержания постоянной скорости движения газа. [c.13]

    Р. Мартином с сотрудниками получены и доложены на VI Международном нефтяном конгрессе [88, 210] интересные результаты по исследованию компонентного состава нефтяных фракций. Предложенный метод дает возможность быстрого анализа насыщенных углеводородов, включая Сг и алкилбензолы состава Ст—Сю, позволяет определить следы углеводородов и не нуждается в предварительной ректификации нефти на узкие фракции. На рис. 26 приведена схема использованной авторами хроматографической установки. Р. Мартин и Дж. Уинтерс применили сочетание насадочной аналитической колонки (/=2,5 ж, й = Ъ мм), которая заполняется хромосорбом с нанесенным в количестве 10% силиконом и служит для выделения фракции углеводородов до Ст или Сю включительно, с капиллярной колонкой. Разделение углеводородов на этой колонке происходит в со-сответствии с их температурами кипения. Выделенные углеводороды конденсируются в емкости 4, охлаждаемой жидким азотом. Более высококипящие углеводороды остаются в предварительной колонке и выдуваются из нее током газа-носителя при нагревании. Для проведения анализа выделенных углеводородов емкость 4 нагревается и проба через приспособление для сброса 5 поступает в разделительную капиллярную колонку 6 длиной 150 м с внутренним диаметром 0,25 мм. [c.86]

    На рис. 8 проведена хроматограмма многоступенчатого анализа омеси газообразных и жидких углеводородов, который был осуществлен п ри иапользовании насадочной колонки внутренним диаметрам 0,7 мм 15 см заполнены окисью алюминия, пропитанной 5 вес. % апьезона С, 45 см — силикагелем с тем же количеством апьезона) и капиллярной колонки внутренним диаметром 0,25 Л1Л1 (длина 45 жл , неподвижная фаза — силикон) . Для переключения потока газа-носителя применялся микроклапан. Проба вводилась в первую колонку, [c.16]

    Распределительная хроматография может осуществляться и на колонках, содержащих носитель, который не адсорбирует растворенные вещества. Распространенными материалами являются диатомовая земля (например, целит), силикагель, порошок целлюлозы и некоторые сшитые декстраны (например, сефадекс ЬН20). Неподвижную фазу готовят путем суспендирования носителя или промывания колонки выбранным сорбентом. При этом сорбент либо покрывает частицы носителя, удерживаясь на них за счет адсорбции, либо просто проникает в промежутки между частицами и удерживается там под действием капиллярных эффектов. При этом важно добиться того, чтобы неподвижная фаза не заполняла пространство между частицами, которое предназначено для прохождения подвижной фазы. Типичными материалами для неподвижных фаз в случае разделения неполярных веществ служат гидрофобные растворители, такие, как бензол для разделения полярных соединений применяют гидрофильные растворители, например спирты. Подвижными фазами при разделении неполярных веществ служат обычно спирты или амиды, а для полярных— вода. Обратите внимание, что в качестве неподвижной фазы используются жидкости. [c.176]

    КАПИЛЛЯРНАЯ ХРОМАТОГРАФИЯ, хроматография (преим. газовая), в к-рой использ. колонки с внутр. диаметром 2 мм и менее. Различают капиллярные насадочные колонки, внутр. объем к-рых полностью заполнен сорбентом, и открытые колонки (более распространены), в к-рых сорбент расположен только на внутр. стенках, а центральная часть не заполнена. Сорбентом в открытых колонках служит пленка неподвижной жидкой фазы, слой адсорбента (графитиров. сажа, силикагель и т. д.) или слой тв. носителя, на пов-сть к-рого нанесена пленка жидкой фазы. Открытые колонки (диаметр, как правило, 0,2—0.5 мм) характеризуются низким сопротивлением потоку газа-носителя, что позволяет изготовлять их большой длины (25— 300 м) и, следовательно, большой эффективности (100— 300 тыс. теор. тарелок). [c.240]

    В газовой хроматографии применяют все три типа существующих колонок насадочные (диаметр 3—5 мм), микронасадочные (диаметр- 0,8—1,5 мм) и полые капиллярные (диаметром 0,1 — 0,8 мм) [1]. Насадочные колонки заполняют частицами сорбента (насадка) диаметром 0,1—0,5 мм. Принято считать, что достаточно однородный поток образуется, если соотношение диаметра колонки к диаметру частиц йр не менее 8. В газовой хроматографии реализуются процессы адсорбции и растворения, в связи с этим насадки представляют собой либо частицы адсорбента, либр частицы сорбента (носитель с нанесенной на него пленкой неподвижной фазы, в которой происходит растворение). В некоторых случаях происходят промежуточные смешанные процессы. Упрощенная схема колонки приведена на рис. 11.1. [c.89]


Смотреть страницы где упоминается термин Газ-носитель в заполненной капиллярной колонке: [c.298]    [c.164]    [c.68]    [c.19]    [c.73]    [c.74]    [c.327]    [c.168]    [c.467]    [c.168]   
Руководство по газовой хроматографии (1969) -- [ c.334 ]

Руководство по газовой хроматографии (1969) -- [ c.334 ]

Руководство по газовой хроматографии (1969) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярность

Носители на колонках



© 2025 chem21.info Реклама на сайте