Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографический пик отрицательный

    Хроматографическую колонку можно использовать многократно, каждый раз перед работой переводя катионит в Н-форму. Для этого через колонку пропускают 2-3 порции раствора НС1 общим объемом 20-25 мл со скоростью 4-5 мл/мин (скорость истечения регулируют краном). Затем колонку промывают дистиллированной водой до отрицательной реакции на [c.308]

    Использование комплексообразующих реагентов резко расширяет возможности хроматографического разделения смесей на анионитах, поскольку, как оказалось, даже легкие щелочные металлы способны образовывать отрицательно заряженные комплексные ионы. [c.117]


    При соблюдении определенных условий, обеспечивающих образование зон осадков с ровными и резко выраженными границами, возможно количественное определение анализируемых ионов непосредственно в хроматографической колонке. Для количественного анализа применяют также метод разбавления исследуемого и стандартного растворов до отрицательной реакции на определяемый ион в условиях получения осадочных хроматограмм. [c.231]

    Во всех перечисленных видах ионообменной хроматографии имеет место многократное повторение процессов ионного обмена, что является отличительной чертой хроматографического процесса. В зависимости от того, происходит ли обменная сорбция положительно заряженных ионов (катионов) или отрицательно заряженных ионов (анионов), ионообменники соответственно делятся на катиониты и аниониты. Существуют иониты, обладающие амфотерными свойствами. [c.142]

    Предварительно для каждого конкретного случая определяют тот предел концентрации, при котором хроматографируемое вещество практически уже не может быть обнаружено осадочно-хроматографическим методом, т. е. половина опытов должна давать положительные, половина — отрицательные результаты. Затем при тех же условиях опыта исследуют раствор того же вещества, но неизвестной концентрации и определяют, при каком разбавлении раствора вещество может быть обнаружено осадочно-хроматографическим методом. Зная предельную обнаруживаемую концентрацию Стш и разбавление п раствора неизвестной концентрации, определяют концентрацию исследуемого вещества в растворе по формуле с ст пп. [c.272]

    После этого определяют содержание соли меди в растворе неизвестной концентрации, для чего исследуемый раствор последовательно разбавляют и исследуют осадочно-хроматографическим методом до получения отрицательного результата. Содержание меди в исследуемом растворе находят по формуле [c.273]

    Адсорбционные процессы нашли широкое применение в технике. Из растворов с помощью различных адсорбентов можно извлекать растворенные вещества. В 1903 г. М. С. Цвет установил, что если через колонку с бесцветным адсорбентом пропускать раствор, содержащий несколько различно окрашенных веществ, то каждое вещество адсорбируется на определенном участке колонки, в результате чего образуется несколько различно окрашенных зон. Этот метод Цвет назвал хроматографическим. В настоящее время в качестве адсорбентов широкое применение нашли органические поглотительные смолы. Смолы, поглощающие из растворов положительные ионы — катионы, названы катионитами, а смолы, поглощающие из растворов отрицательные ионы — анионы, названы анионитами. [c.246]

    Детектор по теплопроводности измеряет различие в теплопроводности чистого газа-носителя н смеси газа-носителя с веществом, выходящим из хроматографической колонки. Поэтому наибольшая чувствительность может быть получена в том случае, когда теплопроводность анализируемого вещества сильнее отличается от теплопроводности газа-носителя. Больишнство органических веществ имеют низкую теплопроводность (табл. П,2), и для их анализа целесообразно использовать газы-носители с возможно более высокой теплопроводностью. Такими газами являются водород н гелий, но на практике водород ввиду его взрывоопасности применяется значительно реже гелия. Так как гелий является довольно дефицитным и дорогим газом, а работа с водородом небезопасна, в некоторых случаях в качестве газов-носителей могут использоваться азот, аргон, углекислый газ или воздух. Однако характеристики детектора по теплопроводности (чувствительность, линейность) при работе с этими газами значительно ухудшаются. Кроме того, при анализе веществ с большей теплопроводностью, чем у газа-носителя, появляются отрицательные пики. [c.45]


    Волокна фильтровальной бумаги, широко применяемой в аналитической химии, и хроматографической бумаги состоят из коллоида — целлюлозы (клетчатки). Эти волокна имеют диэлектрическую проницаемость, значительно меньшую, чем вода, и несут на поверхности отрицательные электрические заряды. Поэтому положительно заряженные коллоидные частицы фильтруемого раствора и осадка легко удерживаются на поверхности волокон бумаги. Образующ,иеся осадки забивают поры фильтров, что замедляет фильтрование. Стеклянные и асбестовые фильтры обладают аналогичными свойствами. Частицы коллоидальных осадков гидроокисей и сульфидов могут прочно приставать даже к стенкам стеклянных сосудов, так как поверхность стекла отрицательно заряжена. [c.89]

    Хроматографическое определение следов различных веществ с помощью проявительной хроматографии возможно только нри том условии, что газ-носитель не содержит анализируемых компонентов или концентрации их в газе-носителе намного ниже, чем в пробе. Однако, например, удаление следов инертных газов пз обычного газа-посителя очень затруднительно, а часто и неосуществимо, так что определение очень малых концентраций этих компонентов встречает серьезные затруднения. Поэтому Уиллис (1959) использовал принцип вакантохроматографии для определения N2, О2 и Н2 при концентрациях до 5-10" % в аргоне. Определение проводилось следующим образом. Приготовляли смесь аргона и постоянных газов при концентрациях более высоких, чем в пробе, и анализировали ее на масс-спектрометре. Эту смесь непрерывно пропускали через колонку, в которую дозировали анализируемую пробу. Разность концентраций компонентов смеси известного состава и анализируемой смеси пропорциональна площадям полученных отрицательных пиков. [c.438]

    Прежде всего соли сильно нарушают равновесие между фазами. Соли частично или полностью высаливают из гидрофильной фазы растворенную в ней гидрофобную фазу, что может отрицательно отразиться на дальнейшем ходе хроматографического процесса. [c.451]

    Существуют также причины хроматографического характера, которые вызывают появление отрицательных пиков на хроматограмме  [c.103]

    Предколонки (форколонки) — одно из средств профилактики описанных нарушений работы колонок. Они могут располагаться в двух точках хроматографической системы (рис. 5.17). Предколонки (ПК1) между насосом и инжектором заполняются обычно пелликулярными сорбентами, родственными по химическому типу тем материалам, которыми заполняется основная колонка (К). Если подвижная фаза обладает способностью растворять сорбент, этот процесс происходит в предколонке (ПКО- В результате подвижная фаза насыщается продуктами деструкции сорбента и, подходя к основной колонке (К), почти полностью теряет свою растворяющую способность. Все отрицательные явления, подобные изображенным на рис. 5.16, в этом случае отмечаются в предколонке, однако это несущественно, так как на ней разделение не происходит. [c.210]

    Хроматографическую колонку заполняют набухшим анионитом АН-2Ф и обрабатывают 1н. раствором соляной кислоты, а затем водой до отрицательной реакции на С1-ион (проба с нитратом серебра), [c.106]

    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    При хроматографическом разделении на силикагеле циклановые и алкановые углеводороды десорбируются обычно совместно. В табл. 5 представлены физико-химические свойства выделенных из топлив циклано-алкановых и ароматических фракций. По сравнению с циклано-алкановыми углеводородами ароматические углеводороды имеют наибольшую плотность и наибольшую объемную теплоту сгорания. Они обладают низкими температурами помутнения и кристаллизации. Эти свойства ароматических углеводородов являются положительными. Однако ароматические углеводороды повышают нагарообразование и гигроскопичность топлив, а также имеют малую стабильность при нагревании (за исключением моноциклических с насыщенными алкильными группами), что отрицательно влияет на работу двигателей. С повышением температуры выкипания топлив содержание в них ароматических углеводородов возрастает. Максимальное количество ароматических углеводородов содержится в конечных фракциях топлив. С повышением температуры выкипания возрастает также цикличность ароматических углеводородов (табл. 6). [c.15]


    Переключателем Скорость коррекции 3 установить желаемую скорость компенсации аналогового сигнала, илн, иными словами, скорость слежения интегратора за изменением сигнала хроматографа. Диапазон автоматической коррекции с.мещения нулевой линии от —i до - -2 мВ. Макси.мальной скорости коррекции соответствует положение 1 переключателя. При обсчете хроматограмм со стабильной нулевой линией можно включать минимальную скорость коррекции (положение 4 переключателя). Это особенно целесообразно, если на хроматограмме и.меются небольшие отрицательные пики или пики с пологим передним фронтом. Максимальную скорость коррекции целесообразно включать при обсчете узких и крутых пиков в условиях дрейфа нулевого сигнала. Следует иметь в виду, что во время интегрирования пика (1орит лампочка Й) коррекция нулевого сигнала отключается. Контроль настройки интегратора по заданному уровню сигнала хроматографического детектора осуществляется по световым индикаторам 15..  [c.99]

    Катарометр — детектор по теплопроводности — основан на изменении температуры чувствительных элементов нагретых нитей в зависимости от теплопроводности окружающего газа. Катарометр измеряет различие в теплопроводности чистого газа-носителя и смеси его с веществом, выходящим нз хроматографической колонки. Наибольщая чувствительность может быть получена в том случае, когда теплопроводность анализируемого вещества сильно отличается от теплопроводности газа-носителя. Большинстио органических веществ имеет низкую теплопроводность и для их анализа используют газы с высокой теплопроводностью (Нз, Не). При анализе веществ с большей теплопроводностью, чем у газа-носителя, хрома10графические пики, соответствующие анализируемым венхествам, будут проявляться на хроматограмме отрицательным пиком. [c.354]

    Протекающие в хроматографической системе взаимодействия можно подразделить на специфические (близкодействующие) и неспецифические (дальнодей-ствующие). К неспецифическим, чисто физическим, взаимодействиям способны все растворенные вещества. Эти взаимодействия можно подразделить на дисперсионные и ориентационно-индукционные. Дисперсионные силы имеют в своей основе согласованное движение электронов во взаимодействующих молекулах. Мгновенное распределение заряда, отвечающее мгновенному дипольному моменту одной молекулы, индуцирует дипольный момент у другой молекулы. Взаимодействие этих моментов определяет дисперсионную энергию. Дисперсионные силы действуют между любыми атомами и молекулами. Они особенно сильны у молекул с сопряженными я-электронными системами, например у ароматических углеводородов, вследствие большой подвижности я-электронов. Ориентационные силы возникают между полярными молекулами, имеющими постоянные дипольные моменты. В этом случае происходит притяжение положительно заряженного конца диполя одной молекулы к отрицательно заряженному концу другой молекулы. Индукционные силы возникают в случае поляризации молекулы, имеющей систему легко смещаемых электронов постоянным диполем другой молекулы. [c.594]

    При хроматографическом способе разделения этот недостаток исключается, потому что в колонке непосредственный контакт между всеми компонентами имеет место только в начале процесса. При этом отрицательное влияние многокомнонентности оказывается намного слабее, чем положительное влияние взаимодействия компонентов с неподвижной фазой. Это обстоятельство обусловливает успешное применение хроматографии к сложным смесям. [c.11]

    В этом случае изотермы веществ оказываются нелинейными, что всегда отрицательно сказывается на хроматографическом разделении. Кроме того, на сорбцию одного компонента влияет присутствие других, т. е. имеет место явление вытеснения. Вследствие адсорбции компонента смеси, имеющего большую концентрацию, заметно увеличиваются мольные доли других компонентов, и концентрации в отдельных зонах уже не отвечают первоначальному составу смеси. Наконец, ири высоких концентрациях детектор работает уже за пределами линейного динамического диапазона, а так как все выделяющиеся из колонки зоны (за исключением первой) содержат несколько компонентов, то показания детектора зависят от качественного и количественного состава пробы. Поэтому, даже если известны изотермы адсорбции смеси, расчет исходных концентраций уже для двухкомпонентной системы весьма затруднителен и неточен. [c.429]

    Фронтальный хроматографически анализ оказался особенно подходящим для этих целей (Джеймс и Филлипс, 1954 Грегг и Сток, 1958 Шай, 1960). Однако отрицательной стороной в этом методе является необходимость работы с относительно большими количествами вещества. Кремер и сотр. (1961) описали методы определения изотерм адсорбции при помощи проявительной хроматографии, которая не имеет такого недостатка. Эти методы основаны на применении уравнения (55), которое выведено авторами другим путем, к десорбционному фронту хроматографического пика. Оказалось возможным графически выразить функцию / ( ) через величины Vизмеренные при различных концентрациях компонента. Посредством графического интегрирования этой зависимости получают изотерму адсорбции. Так как при выводе не учитывалось размывание границы, вызываемое диффузией, то необходима еще корректировка измеренных величин. Это осуществляется при предположении о том, что размывание фронта и тыла одинаковы. [c.465]

    Реакция (75) протекает обратимо в хроматографическом режиме только в случае, если Ка = Кв = Кс, в других случаях реакция становится необратимой. Таким образом, в условиях хроматографического режима возникает возможность необратимого проведения обратимых химических реакций. Широкие возможности появляются для устранения ингибиторного и ини-циаторного воздействия определенных веществ, для подавления положительного или отрицательного автокатализа продуктов реакции. При реакци- [c.470]

    По незамещенным силанолам может происходить неконтролируемая сорбция белков или малых молекул, например ионов при так называемой ион-парной хроматографии (см. ниже), от чего страдают разрешающая способность и воспроизводимость хроматографического процесса. Во избежание этого силикагель после модифика ции обрабатывают еще и низкомолекулярным модификатором гидрофобной природы — триметилхлорсиланом. О том, какой эффект дает такая дополнительная обработка, молено судить по следующему примеру. Для фенилтиогндантоинового производного аргинина (ФТГ-Arg) на колонке Ultrasphere ODS , не обработанной триметилхлорсиланом, при элюции 50%-ным метанолом значение составляет 4,33. После такой обработки задержание ФТГ-Arg на колонке уменьшается настолько, что ему отвечает значение = 1,67. Между тем для ФТГ-Val подобного эффекта не наблюдается. Очевидно, что положительно заряженный остаток аргинина взаимодействует с отрицательным зарядом ионизированной силанольной группы. Из этого примера ясно, что экспериментатору следует знать, был ли имеющийся в его распоряжении сорбент дополнительно об- [c.189]

    К существенному искажению результатов хроматографического разделения приводят погрешности, связанные с детектированием, или усилением. Каждый детектор характеризуется специфичностью, линейностью и чувствительностью. Особенно важна проверка на селективность при анализе микропримесей. Отклик УФ-детекторов может изменяться на вещества со схожими функциональными группами в 10" раз. Необходимо отклик детектора прокалибровать для каждого определяемого вещества. Естественно, что вещества, не поглощающие в УФ-области, не дадут сигнала на самописец при использовании в качестве детектора фотометра. При использовании рефрактометра возможно появление отрицательных ликов. Кроме того, этот детектор необходимо термостатировать, чего не требуется для УФ-детектора. [c.175]

    В случае аняонообменной смолы положительный заряд встраивается в матрицу и должен компенсироваться отрицательно заряженными ионами, которые легко обмениваются с другими анионами раствора, контактирующего со смолой. Ионообменные смолы используются в разнообразных аналитических методиках. Довольно часто их применяют в хроматографических методах, на-щт<ер в ионной хроматографии в подавляющей колонке. [c.217]

Рис. 14.2-2. Демонстрадия селективности, достигаемой химической ионизацией (отрицательно заряженные ионы) по сравнению с ионизацией электронным ударом (положительно заряженные ионы) для анализа экстракта почвы на бифенилы, а — общий ионный ток (ОИТ) в режиме электронного удара, при котором очевидно серьезное мешающее влияние комплексной матрицы б — ОИТ того же экстракта при детектировании отрицательно заряженных ионов в режиме химической ионизации с метаном. Хроматографические условия температура инжектора 250° С, объем пробы 1 мкл (без деления потока), колонка DB 5ms, 15 мх0,25 ммх 0,25 мкм, газ-носитель — гелий (0,3 бар), температура термостата 60°С (1 мин) —> 20°С/мин —> 280°С (10 мин), температура источника 250°С (электронный удар), 140°С (химическая ионизация) [14.2-2]. Рис. 14.2-2. Демонстрадия селективности, достигаемой <a href="/info/141302">химической ионизацией</a> (отрицательно заряженные ионы) по сравнению с <a href="/info/190183">ионизацией электронным ударом</a> (положительно заряженные ионы) для <a href="/info/1661090">анализа экстракта</a> почвы на бифенилы, а — <a href="/info/1076182">общий ионный</a> ток (ОИТ) в режиме <a href="/info/595617">электронного удара</a>, при котором очевидно серьезное мешающее влияние комплексной матрицы б — ОИТ того же экстракта при детектировании отрицательно заряженных ионов в режиме <a href="/info/141302">химической ионизации</a> с метаном. Хроматографические условия <a href="/info/1610206">температура инжектора</a> 250° С, объем пробы 1 мкл (без <a href="/info/393253">деления потока</a>), колонка DB 5ms, 15 мх0,25 ммх 0,25 мкм, газ-носитель — гелий (0,3 бар), температура термостата 60°С (1 мин) —> 20°С/мин —> 280°С (10 мин), температура <a href="/info/325167">источника</a> 250°С (<a href="/info/595617">электронный удар</a>), 140°С (химическая ионизация) [14.2-2].
    Наряду с КЗЭ, при котором удается осуществить разделение только за счет разницы в подвижности, и который в настоящее время представляет собой наиболее распространенный метод, выделяют также капиллярный гель электрофорез (КГЭ) с капилляром, заполненным гелем. При этом на электрофоретическую миграцию молекул оказывает влияние матрица геля, и поэтому достигается селективное разделение молекул по размерам. Незаряженные молекулы можно разделять с помощью мицеллярной электрокинетической хроматографии (МЭКХ). В данном случае к буферу добавляется детергент, и нейтральные молекулы распределяются между буфером и мицеллами в соответствии с их гидрофобностью. Разделение основано на подвижности мицелл, заряженных в большинстве случаев отрицательно. Поскольку в основе разделения лежит процесс распределения, можно с полным основанием говорить о хроматографическом методе. При изоэлектрической фокусировке (ИЭФ) происходит разделение в градиенте pH, формируемом добавлением амфолита к буферу в электрическом поле. Небольшое распространение получила пока электрохроматография (ЭХ), при которой применяется стационарная среда ВЭЖХ, а течение эдюента и перенос пробы происходит только за счет электроосмотического потока. В качестве самой старой капиллярной техники следует упомянуть изотахофорез (ИТФ), который в настоящее время вновь приобрел значение для концентрирования проб в КЭ. [c.7]

Таблица 7-7. Выявление неисиравностей в хроматографической системе, приводящих к появлению отрицательных пиков Таблица 7-7. Выявление неисиравностей в <a href="/info/19357">хроматографической системе</a>, приводящих к появлению отрицательных пиков
    Установка нуля Установку нуля выходного сигнала детектора или системы обработки сигнала следует проводить тогда, когда вещества не эдюируются из колонки, а следовательно, сигнал соответствует хроматографической нулевой линии. Если установка нуля проводится во время элюирования компонентов предыдущей анализируемой пробы, то при проведении текущего анализа на нулевой линии может наблюдаться дрейф в отрицательном направлении или отрицательные пики. При необходимости следует периодически проводить кондиционирование хроматографической системы при повышенной температуре с тем, чтобы "выжечь" накопившиеся в ней сильно удерживаемые компоненты. [c.104]

    При исследовании закономерностей хроматографического поведения условия эксперимента необходимо выбирать таким образом, чтобы погрешность измерения коэффициентов емкости была минимальной. Поскольку корректное определение величины /о, требуемой для расчета к, встречает значительные затруднения, единственным реальным выходом, видимо, является выбор для этой цели условно несорбирующихся веществ. Разумеется, систематические погрешности измерения к устранены не будут, но тем не менее такой подход создаст основу для рационального обобщения и интерпретации данных. Вообще, по нашему мнению, положение с измерением о и к излишне драматизировать не следует. Во-первых, погрешность измерения резко отрицательно сказывается только на слабоудерживаемых сорбатах. Согласно рнс. 5.19, начиная с к А относительная погрешность к равна погрешности измерения /о и практически постоянна для всех соединений с к >А. Во-вторых, при выводе закономерностей, подобных уравнениям (4.52) и (4.23), погрешность измерения к станет составной частью свободного члена, а коэффициенты, описывающие влияние структуры сорбата или состава элюента, будут найдены правильно. [c.223]

    Выполнение работы. Хроматографическую колонку заполняют силикагелем, предварительно очищенным от примесей железа кипячением с раствором соляной кислоты. Через колонку непрерывно пропускают хлорбензол, содержащий небольшую примесь хлорного железа. Время от времени с кончика колонки отбирают в пробирку несколько капель хлорбензола, добавляют к ним раствор роданида аммония и несколько капель азотной кислоты. Появление слаборозовой окраски роданида железа (П1) свидетельствует о начале проскока хлорного железа. При отрицательной реакции на ион Ре фильтрование хлорбензола продолжают. [c.58]

    Для нейтрализации продукт гидролиза пропускают через колонку (длина 15 см, а ширина 1 см) с анионитом (например, можно использовать анионит из опыта 5-13). После этого колонку промывают 50 мл воды. Последние капли промывных вод должны давать отрицательную реакцию на сахар при нанесении на хроматографическую бумагу и последующем проявлении анилинфталатом после высыхания бумаги. В этом случае раствор концентрируют, отгоняя растворитель в вакууме, до объема 5 мл. [c.251]


Смотреть страницы где упоминается термин Хроматографический пик отрицательный: [c.75]    [c.20]    [c.37]    [c.44]    [c.223]    [c.106]    [c.369]    [c.421]    [c.34]    [c.7]    [c.22]    [c.34]    [c.328]   
Руководство по газовой хроматографии (1969) -- [ c.437 , c.438 ]

Руководство по газовой хроматографии (1969) -- [ c.437 , c.438 ]




ПОИСК





Смотрите так же термины и статьи:

отрицательная



© 2025 chem21.info Реклама на сайте