Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное присоединение карбонильных соединений

    Аналогично реакциям нуклеофильного присоединения карбонильных соединений. [c.681]

    Реакция. Нуклеофильное присоединение магнийорганических соединений по карбонильной группе (реакция Гриньяра [70]). Получение третичного спирта с последующим 1,2-элиминированием воды (дегидратация, ср. с. 51). [c.232]

    Реакция. 1. Синтез вторичного спирта нуклеофильным присоединением металлоорганического соединения по карбонильной группе альдегида (реакция Гриньяра применение магнийорганических соединений). [c.513]


    Перенос гидрид-иона к атому углерода карбонильного соединения приводит к восстановлению последнего в спирт. Такие реакции в некоторых случаях (см. задачи 17—22, 26, 29—31, 33) осложняют процесс нуклеофильного присоединения магнийорганических соединений к кетонам. [c.166]

    Большинство примеров реакций присоединения нуклеофильных реагентов к кратной углерод-углеродной связи а, -непре-дельных карбонильных соединений было приведено в разд. 1.1. Здесь же осталось рассмотреть еще две реакции, в которых присоединение этих реагентов идет в по.ложение 1,4, [c.85]

    Подобно а,р-непредельным карбонильным соединениям алифатического ряда, хиноны способны к 1,4-присоединению элект- офильных радикальных и нуклеофильных реагентов. [c.88]

    Выход продукта восстановления можно снизить, если в реакционную смесь предварительно ввести эквимольное количество безводного бромида магния. Как было упомянуто выше, на атоме магния в этой соли имеется больший, по сравнению с реактивом Гриньяра, дефицит электронной плотности, так как атом магния в этом соединении обеими валентностями связан с более электроотрицательными, чем атом углерода, атомами брома. Поэтому он более прочно, чем реактив Гриньяра, координируется по атому кислорода карбонильной группы, ограничивая возможность гидридного перехода от -углеродного атома радикала )еактива Гриньяра к атому углерода карбонильной группы формула (36)], и тем самым повышает выход продукта нуклеофильного присоединения. [c.283]

    Альдегиды и кетоны. Строение карбонильной группы. Изомерия и номенклатура. Способы получения. Химические свойства. Реакции нуклеофильного присоединения. Реакции замещения и окисления. Функциональные производные оксосоединений ацетали, оксимы, гидразоны, азины. Альдольная и кротоновая конденсации. Дикарбонильные соединения. Непредельные альдегиды и кетоны. Кетены. УФ и ИК спектры альдегидов и кетонов. [c.170]

    Нуклеофильное присоединение. Присоединение оснований или слабых кислот к карбонильным соединениям  [c.127]

    Другой тип нуклеофильного присоединения — это присоеди- ение нуклеофильных карбанионов, образующихся при взаимодействии сильных оснований с карбонильными соединениями. На следующем этапе происходит уже присоединение карбанионов к исходным карбонилам. Эта реакция называется аль- дольной конденсацией, а ее значение определяется тем, что, подобно реакции Гриньяра (разд. 6.2.2.2), она приводит к удлинению углеродно чени. Рассмотрим эту реакцию на примере уксусного альдегида  [c.160]


    Нуклеофильным присоединением можно считать и реакцию карбонильных соединений с реактивами Гриньяра (разд. [c.161]

    Образование фенилгидразонов — одна из типичных реакций замещения по карбонильной группе, идущих через стадию нуклеофильного присоединения. Эта реакция используется для идентификации альдегидов и кетонов и для выделения карбонильных соединений из смесей. [c.132]

    Для реакций нуклеофильного присоединения к олефинам и карбонильным соединениям было предложено несколько моделей переходных состояний (размеры заместителей уменьшаются в ряду) [c.72]

    Приведите общую схему механизма реакций нуклеофильного присоединения по карбонильной группе и дайте ответы на следующие вопросы 1) увеличивается или уменьшается реакционная способность карбонильных соединений в следующих рядах /О /О [c.82]

    Перемещение электронов в сопряженной системе а,р-ненасы-щенных соединений, которое понижает реакционную способность по отношению к электрофилам, вызывает соответствующее повышение активности в реакциях с нуклеофилами. Это является характерной особенностью а,р-ненасыщенных карбонильных соединений. Общая схема нуклеофильного присоединения НХ [c.255]

    Это нуклеофильное присоединение к сг,р-ненасыщенным карбонильным соединениям (называемое реакция Михаэля ) не ограничивается кислотами, оно вообще характерно для а, 1-не-насыщенных сложных эфиров, кетонов, альдегидов, а также нитрилов. На самом деле а,р-ненасыщенные кислоты реагируют труднее, чем их эфиры или нитрилы, поскольку в используемых условиях карбоксильная группа обычно превращается в анион (наиболее сильные нуклеофилы являются также основаниями), который, будучи отрицательно заряженным, менее чувствителен к нуклеофильной атаке, чем незаряженная частица. Однако производные карбоновых кислот реагируют легко, например  [c.256]

    Структурные особенности карбонильного соединения, определяемые стерическими или электронными факторами, влияют сходным образом как на скорость реакции присоединения, так и на положение равновесия. Переходное состояние, возникающее в случае простых реакций присоединения, вероятно, ближе напоминает продукт присоединения, чем исходное карбонильное соединение. Часто бывает трудно разделить влияние стерических и электронных эффектов, особенно в случае реакций, при которых вслед за начальной стадией нуклеофильного присоединения к карбонильной группе происходит отщепление с образованием конечного продукта, как это имеет место, например, в случае образования оксима см. стр. 206), [c.201]

    Сравнение относительной реакционной способности простых альдегидов может осложняться тем обстоятельством, что в водных растворах некоторые из них частично превращаются в гидраты см. ниже), а в спиртах ROH — в полуацетали (см, стр. 203) в результате истинная концентрация свободного карбонильного соединения может зависимости от условий изменяться. Для данного карбонильного соединения при данных условиях равновесная концент ация продукта присоединения определяется природой нуклеофильного реагента чем прочнее связь, которая может возникнуть между нуклеофилом и карбонильным углеродом, тем сильнее сдвинуто равновесие в сторону присоединения. Именно поэтому мы наблюдаем возрастание равновесных концентраций продуктов присоединения в ряду [c.201]

    Механизм восстановления кислот и их функциональных производных известен лишь в самых общих чертах. Общую схему восстановления этих соединений можно представить следующим образом. По-видимому, вначале происходит нуклеофильное присоединение гидридного эквивалента по карбонильной группе с образованием алкоголята А  [c.124]

    Реакции нуклеофильного замещения или присоединения с использованием ацетиленовых солей не ограничиваются только реакциями с алкилирующими агентами или карбонильными соединениями. Ниже кратко упомянуто несколько примеров других типов реакций  [c.192]

    Анионы нитрометана и его гомологов легко присоединяются к карбонильным и ненасыщенным карбонильным соединениям, а также к азометинам (разд. В.1 и В.2). Эти реакции дополняет присоединение нуклеофильных реагентов к а-нитроолефинам, обсуждаемое в разд. В.2. Интересно отметить, что в литературе отсутствуют замечания о конденсации нитроалканов со сложными эфирами по ме- [c.495]

    Реакция. Нуклеофильное присоединение матнийорганического соединения по карбонильной группе (реакция Гриньяра [70]). Синтез третичного спирта из кетона. [c.233]

    Кислород карбонильной группы в кетонах и альдегидах может быть непосредственно замещен на иминогруп-пу при взаимодействии их с аммиаком или аминами. Реакция идет с образованием неустойчивых промежуточных продуктов нуклеофильного присоединения — оксиамино-соединений, которые отщепляют воду и переходят в ими-носоединения — альдимины и кетимины  [c.65]


    Здесь нет никаких сомнений в том, что такие реакции являются нуклеофильным присоединением металлоорганическое соединение отдает свою алкильную группу в виде карбаниона (предварительно образовавшегося или нет — это уже другой вопрос) электрофильному центру пенасыш,енного соединения, т. е. либо карбонильному атому углерода, либо р-углеродному атому сопряженной олефин-карбонильной группы. [c.843]

    Как было уже показано, мпол ество методов образования углерод-углеродной связи основано на псполь-зовании карбонильной группы в качестве активирующей функции, позволяющей вводить самые разнообразные структурные фрагменты по атомам углерода, соседним с карбонилом. Продукты таких реакций также являются карбонильными соединениями. Их можно трансформировать далее как без изменения углеродного скелета (нанример, с использованием нуклеофильного присоединения к карбонильной группе), так и с разрывом связи [c.199]

    К реакщ1ям нуклеофильного присоединения относятся реакции карбонильных соединений с водой. спирт ши, меркаптанами, аммиаком, аминами, цианидами и т.д. [c.74]

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильном соединении имеется значительный дефицит электронной плотности, обусловленный различием в электроотрицательности атомов углерода и кислорода и поляри.чуемостью кратной связи, реактив Гриньяра легко атакует его как нуклеофил, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом и последующем гидролизе образуются первичные спирты, с остальными альдегидами — вторичные, а с кетонами — третичные спирты  [c.277]

    Еще труднее задержаться на стадии нуклеофильного присоединения— получении аддукта (51)—в случае галогенангидридов кислот. Поэтому, если требуется получить из галогенангидрида кислоты карбонильное соединение, используют кадмийор-ганическое соединение, менее активное, чем RMgX  [c.295]

    Нуклеофильное присоединение по кратным связям широко применяется в органическом синтезе. С помощью этой реакции получают соединения с более сложным углеродным скелетом, чем исходные вещества (реакции конденсации), превращают алифатические соединения в карбоцнклические и гетероциклические синтезируют полифункциональные соединения. Реакции нуклеофильного присоединения применяются также для идентификации карбонильных соединений, выделения их из смесей и очистки, [c.124]

    При реакции карбонильных соединений с цианидами щелочных металлов или с циановодородом образуются циангид-рины. Эти реакции протекают по механизму нуклеофильного присоединения, причем сначала цианид-ион СМ присоединя- [c.159]

    В реакции 2 пзображено взаимодействие нуклеофильной частицы с поляризованной связью С=0 карбонильного соединения. Пронсходит присоединение, сопровождающееся раскрытием двойной связи и сосредоточением отрицательного заряда на кислороде. Процесс завершается нейтрализацией этого отрицательного заряда протоном (реакция 3). [c.174]

    Общую- скорость реакции карбонильного соединения может определять как стадия присоединения (Г.7.7), так и стадия конденсации (Г.7,9). При реакциях, с сильнонуклеофильными веществами (аммиак, алифатйческие амины, гидроксиламин) в нейтральной или щелочной среде присоединение, как правило, идет быстро, так что скорость реакции определяется деглдратацией (Г.7.9). Поскольку эта стадия катализируется кислотами, добавление последних ускоряет реакцию. Однако кислота, играющая роль катализатора, взаимодействует и с нуклеофильным агентом, превращая его в соль и тем самым блокируя его свободные электронные пары. Чем сильнее основание, вступающее в реакцию, тем ниже концентрация кислоты, при которой происходит блокирование. Солеобра-зование может настолько понизить скорость присоединения (Г.7.7), что онО превращается в стадию, определяющую скорость всего процесса. Поэтому нередко бывает так, что карбонильная реакция при некотором определенном рГГ [c.55]

    В разделе рассмотрены главным образом нуклеофильные реакции присоединения аминов к ненасыщенным (разд. Г.1) и карбонильным соединениям (разд. Г,2) и образование самых разнообразных аддуктов формальдегида и амина, получаемых по реакциям типа реакции Манниха (разд. Г.З и Г.4), а затем присоединение аминов к сопряженным соединениям (разд. Г.6 и Г.7). Обсуждаются также реакции присоединения к эпокисям и этилениминам (разд. Г.5), Заметным достижением является применение тетракис-(рдметнл-амино)титана для получения геминальных диаминов или енаминов (разд. Г.2) и использование обратимости реакций присоединения акрилонитрила к аминам для получения чистых вторичных аминов (разд. Г.7, пример б./). В разд. Д и Е также рассматриваются реакции присоединения первый из них посвящен реакциям металлоорганических соединений, а второй — электрофильным и свободно-р ади кальнымТреакциям. [c.523]

    Пировиноградную кислоту следует выделить из всех а-оксокислот еш,е и как источник весьма суш,ественных биологически активных соединений, получаемых in vivo в результате реакции нуклеофильного присоединения по карбонильной группе и последуюш,их преобразований. С таким реагентом [c.26]


Смотреть страницы где упоминается термин Нуклеофильное присоединение карбонильных соединений: [c.408]    [c.278]    [c.279]    [c.765]    [c.382]    [c.110]    [c.114]    [c.144]    [c.277]    [c.276]    [c.295]    [c.300]    [c.1237]    [c.1255]   
Органическая химия (1964) -- [ c.420 , c.495 ]

Органическая химия (1964) -- [ c.49 , c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Нуклеофильные соединения

Присоединение нуклеофильное

Присоединение нуклеофильное Нуклеофильное присоединение



© 2025 chem21.info Реклама на сайте