Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насыщенные алифатические сложные эфиры

    Карбоновые кислоты НСОгН, где К представляет собой алкильную или алкенильную группу, называют также жирными кислотами, но этот термин применяют обычно в более узком смысле, к встречающимся в природе насыщенным и ненасыщенным алифатическим кислотам с неразветвленной цепью, которые в форме сложных эфиров входят в состав жиров, восков и масел растений и животных. Наиболее распространенными жирными кислотами являются пальмитиновая, стеариновая, олеиновая и линолевая кислоты в природе они встречаются в виде глицеридов — сложных эфиров трехатомного спирта глицерина. [c.448]


    Насыщенные алифатические сложные эфиры [c.367]

    Полоса v = 0 имеет приблизительно ту же частоту, что и для алифатических сложных эфиров (ср. табл. VII, стр. 519). Для насыщенных fi-лактонов 270) указывают следующие интервалы 1739—1733 сж-1 (в U) [939] 1747—1737 сж-> (стероиды, в ССЦ или Sz) [428]. Ножничные колебания кольцевых СНг-групп 270) являются характеристическими группе СНг в положении 3 соответствует полоса при 1422—1418 смг , группе СНг в положении 6 — при 1400 мr [428]. Колебания v —О (в кольце) найдены при 1240—1220 сж-1 [939] [c.553]

    Полистирол 1,05 <20 Легколетучие продукты запах фруктовый, сладковатый Горит Сероуглерод, ароматические углеводороды, низшие алифатические сложные эфиры, галогенпроизводные углеводородов, ароматические сложные эфиры Эфиры, спирты, кислоты, фенолы, насыщенные углеводороды [c.546]

    Спирты, применяемые в производстве сложных эфиров. Для изготовления пластификаторов широко применяют первичные алифатические насыщенные спирты, содержащие от I до 10 атомов углерода. Метанол в настоящее время получают гидрогенизацией окиси углерода, этиловый спирт — гидратацией этилена или брожением, изопропиловый спирт — гидратацией пропилена. 2-Этилгек-санол получают по альдольной реакции из масляного альдегида, который в свою очередь синтезируют из этилового или бутилового спиртов. Однако наиболее важным современным процессом получения спиртов, используемых при синтезе пластификаторов, является гндрокарбонилизация или оксо процесс, когда оле-фин взаимодействует с окисью углерода и водородом в присутствии кобальтового катализатора с образованием альдегида, который сразу гидрогенизируется до первичного спирта последний имеет на один атом углерода больше, чем исходный олефин. Обычно используют олефины с 6—8 атомами углерода, образующиеся при крекинге парафина. Нониловый спирт (3,5,5-триметилгексанол- ) получают подобным же путем из диизобутилена, а изооктиловый и изодециловый спирты — из соответствующих олефинов. Необходимо отметить, что исходные углеводороды обычно представляют собой смеси изомеров, поэтому при синтезе получают эквивалентное количество изомерных спиртов, которые всегда являются первичными. [c.339]

    Полиметилмета- крилат 1,18—1,19 >200 Легколетучие продукты реакция кислая запах фруктовый Низшие алифатические сложные эфиры, ароматические углеводороды, ацетон, ледяная уксусная кислота Высшие алифатические сложные эфиры, насыщенные углеводороды, гликоли, спирты [c.546]


    При промышленной этерификации высокомолекулярных алифатических или нафтеновых спиртов серной кислотой [12] целесообразно вводить инертный растворитель, например четыреххлористый углерод или насыщенны углеводород. В этом случае реакционная смесь состоит из двух слоев, в одном из которых содержится избыток серной кислоты, а в другом—сложный эфир и растворитель. Прибавление спирта, нанример н-бутилового, к реакционной смеси, полученной прп этерификации цетилового или олеилового спиртов, способствует отделению кислого эфира от избытка серной кислоты. При последующем прибавлении воды образуются два слоя, причем практически вся серная кислота уходит в водный слой [13]. С целью удаления кислоты рекомендуется [14] к реакционной смеси прибавлять глицерин или его [c.8]

    Восстановление. Н, м. был недавно предложен в качестве заменителя алюмогидрида лития, так как имеет определенные преимущества. Н. м. не воспламеняется во влажном воздухе или кислороде, устойчив к действию сухого воздуха. Очень хорошо растворим в ароматических растворителях и простых эфирах. Реакции можно проводить при температурах до 200 . Н. м. быстро и хорошо высушивает ароматические углеводороды и простые эфиры. Как восстановитель новый реагент полностью сравним с алюмогидридом лития. Так, он с высоким выходом восстанавливает альдегиды и кетоны до соответствующих спиртов, причем полное восстановление гарантировано при использовании лишь 5—10%-ного избытка реагента [21. Н. м. восстанавливает насыщенные и а,15-ненасыщенные кислоты, сложные эфиры, хлораигидриды и ангидриды кислот. Изолированные двойные связи не восстанавливаются. Лактоны восстанавливаются до диолов [31. Оксимы с удовлетворительным выходом восстанавливаются до первичных аминов. Нитрильная группа, связанная непосредственно с ароматическим циклом, также восстанавливается, но арилалифатические нитрилы восстанавливаются лишь с низким выходом, а алифатические нитрилы не восстанавливаются совсем [41. [c.189]

    Воски в отличие от жиров представляют собой сложные эфиры карбоновых кислот - 26 и одноатомных спиртов. Воски подразделяют на цериды, производные алифатических насыщенных спиртов с длинными (С24-С32) углеродными цепями, и сте-риды, производные полициклических спиртов (стеролов). Общая формула ВОСКОВ (церидов) имеет вид  [c.102]

    Насыщенные алифатические кислоты дают на КРЭ волну, которая обусловлена разрядом ионов водорода простейшие сложные эфиры не дают волн. Простые многоосновные кислоты, например щавелевая, винная, малоновая, янтарная и адипиновая, также дают одну волну в нейтральном фоно- [c.379]

    Результаты опытов, полученные для ароматических соединений, не распространяются непосредственно на алифатические компоненты смазочных масел. Рассмотренные выше работы с полифенилами приведены лишь потому, что влияние типа излучения удается достаточно точно оценить и выразить количественно на наиболее радиационностойких органических соединениях. Для алифатических же углеводородов, простых и сложных эфиров имеющихся данных недостаточно для количественного выражения влияния типа излучения. До сих пор еще нет убедительных даже качественных доказательств [66], подтверждающих усиление радиолиза насыщенных углеводородов при бомбардировке более тяжелыми частицами. Однако для алифатических эфиров, как простых [120], так и сложных [146], это влияние отчетливо проявляется в этом отношении они напоминают ароматические соединения. [c.75]

    Первая реакция аналогична восстановлению алифатических кислот и их сложных эфиров и протекает с теми же катализаторами. Гидрирование с насыщением ароматической системы во многом подобно гидрированию соответствующих углеводородов (на никелевом катализаторе при 160—200 °С и под давлением водорода). Ароматическое ядро карбоновых кислот гидрируется значительно труднее, чем в бензоле или феноле. [c.491]

    В расчетах мольных объемов введение структурного принципа явилось по сути дела продолжением линии Коппа, проведшего-различие между двумя типами атомов кислорода в органических соединениях. В 1865 г. Буфф показал, что ненасыщенный углерод, занимает больший, объем, чем насыщенный. Затем были введены поправки на двойную и тройную связи, на замыкание цикла и т. д, Ле Ба (1906 г. и след.) разработал подробную схему расчета атомных и молекулярных объемов, предположив, что атомные объемы пропорциональны валентности атомов, например атомные объемы насыщенного углерода и водорода должны относиться как 4 1. Дальнейшая детализация схемы связана с многочисленными поправками например, учитывающими, находится ли кислород в группе С=(> или С—О, а также находится ли последняя группа в алифатических спиртах, фенолах, кислотах, простых или сложных эфирах. При этом в простых эфирах КОК значение атомного объема кислорода одно, если К и К алкилы, и другое, если радикалы — арилы и еще, когда К — это СНз, атомный объем кислорода имеет особое значение и т. д. [83, с..22]. [c.326]


    АМИЛОВЫЕ СПИРТЫ С НцОН -алифатические насыщенные спирты, бесцветные жидкости с неприятным запахом сивушного масла. Получают перегонкой сивушного масла и синтетическим способом из газов крекинга нефти. А. с. поражают нервную систему. Применяют их для получения сложных эфиров, используемых в парфюмерии (амилацетат), в производстве бездымного пороха, пищевых эссенций (изоамилацетат) и как растворители. [c.22]

    Сложные эфиры пентаэритрита. Сложные эфиры пентаэритрита и насыщенных жирных кислот отличаются высокой термической стойкостью, объясняющейся отсутствием р-водородных атомов в спиртовом остатке молекулы [20]. Вследствие этого температура их разложения достигает 307 °С (для пентаэритрит-гегра-гексаноата), а максимальная температура эксплуатации, допускаемая при доступе воздуха, несколько превышает 205 °С. Консистентные смазки, содержащие сложные эфиры пентаэритрита соответствующей вязкости и стабильные загустители, дают удовлетворительные результаты при применении в интервале температур от —46 до +205 °С. Стойкость к окислению и антикоррозионные свойства сложных эфиров пентаэритрита можно легко у.тучшить добавлением присадок при испытании по методу Ь-35 координационного исследовательского комитета срок службы в подшипнике при 177 °С достигает около 3000 ч. Как и сложные уфиры алифатических двухосновных кислот, сложные эфиры пентаэритрита также вызывают набухание резин на натуральном и многих синтетических каучуках поэтому применение их при наличии резиновых уплотнений н прокладок требует большой осторожности. [c.250]

    Область применения насыщенные, ненасыщенные и галогенированные алифатические и ароматические углеводороды (например, 1—Св-алканы+ +олефины, разделение в течение 1 мин), альдегиды, спирты (при 140°С симметричные пики), простые эфиры, кетоны, сложные эфиры. [c.212]

    Амиды, сложные эфиры и ангидриды всех насыщенных алифатических одноосновных и двухосновных кислот, за исключением производных щавелевой кислоты, не восстанавливаются поляро- [c.33]

    Поливинилацетат Бензол, толуол, хлороформ, хлорбензол, метанол, аллиловый спирт, бензиловый спирт, тетрагидрофуран, диоксан, эфиры гликоля, ацетон, метилэтилкетон, уксусная кислота, низшие алифатические сложные эфиры, ацетонитрил, нитрометан, диметилформамид, диметилсулы )о-ксид, хлороформ, хлорбензол Насыщенные углеводороды, этанол, циклогексанол, диэтиловый эфир, сероуглерод [c.294]

    Реакция серебряных солей карбоновых кислот и галогена, приводящая к образованию галогенпроизводного, содержащего на один атом углерода меныце, чем исходная соль карбоновой кислоты, известна под названием Реакции Хунсдикера. Сравнительно недавно опубликовано несколько обзоров, рассматривающих кар эту, так и некоторые другие сходные реакции [146, 147]. По реакции Хунсдикера получают отличные выходы галогенпроизводных из насыщенных алифатических кислот, содержащих от двух до восемнадцати атомов углерода. Наличие заместителей в любом положении, кроме а, не влияет па эту реакцию, за исключением тех случаев, когда они реагируют с образующимся в качестве промежуточного соединения ацилгипогалогеиитом. Серебряные соли галогензамещенных сложных эфиров, например серебряная соль -бромпропио-новой кислоты, образуют с бромом дибромиды [148]. Из серебряных солей эфиров кислот можио получить -галогензамещенные сложные эфиры, трудно доступные другими методами 149] [c.395]

    Совершенно понятно, что лучшие разделяюшие свойства сложных эфиров и карбаматов связаны с наличием полярной карбонильной группы, которая вызывает увеличение удерживания полярных сорбатов. Исследования величин к для серии соединений с возрастающей полярностью на колонке с ТБЦ и колонке с трибензилцел-люлозой дали подтверждающие результаты. Если рассчитать отношение величин к (к для колонки с ТБЦ в знаменателе) для такой серии соединений, то это отношение <2 для насыщенных и хлорированных углеводородов, 2 для ароматических углеводородов с неполярными заместителями и > 3 для амидов, спиртов, лактонов, сульфоксидов и алифатических нитросоединений [52]. [c.117]

    К диэфирным пластификаторам относятся сложные эфиры алифатических (от щавелевой до 1,10-декандикарбоновой) и ароматических (о,л1./г-фталевых) дикарбоновых кислот и алифатических или циклических спиртов от i до С сложные эфиры насыщенных алифатических монокарбоновых кислот от Се до ie (2-этил-гексановой, 2-этилм-асляной, капроновой, стеариновой и пр.) или ненасыщенных монокарбоновых кислот от ie до С24 (олеиновой, смеси жирных кислот соевого или таллового масел) или ароматических монокарбоновых кислот (бензойной) и спиртов от С4 до i3 или гликолей и сложные эфиры тримеллитовой или пиромел-литовой кислот и алифатических спиртов от С4 до Сэ. [c.5]

    Интенсивность пика молекулярного иона зависит от стабильности самого иона. Наиболее стабильными молекулярными ионами являются ионы чисто ароматических систем. Если имеются заместители, которые дают преимущественное направление распада, то пик молекулярного иона будет менее интенсивным, а пики осколков относительно возрастут. Вообще ароматические соединения, сопряженные олефины, насыщенные циклические соединения, некоторые серусодержащие соединения и короткие неразветвленные углеводороды будут давать заметный пик молекулярного иона. Пик молекулярного иона обычно легко выявляется в неразветвленных кетонах, сложных эфирах, кислотах, альдегидах, амидах, простых эфирах и галогенидах. Пик молекулярного иона часто не идентифицируется в алифатических спиртах, аминах, нитритах, нитратах, нитросоединениях, нитрилах и в сильно разветвленных соединениях. [c.40]

    Малоновый эфир н все еложные эфиры, содержащие группировку— СОСНгСО— или — O Ha iN, реагируют с альдегидами легче, чем сложные эфиры одноосновных жирных кислот. Эта конденсация протекает как с ароматическими, так и с алифатическими альдегидами, обычно, в присутствии небольшого количества аммиака, диметиламина, пиперидина и т. п. В этих условиях алифатические альдегиды образуют преимущественно насыщенные сложные эфиры в результате взаимодействия с 2 мол. малоБового эфира, тогда как ароматические альдегиды превращаются при этой в ненасыщенные сложные эфиры ацетальдегид реагирует с малоновым эфиром с образо-вание.м эфира (XV). Аналогичным образом ведут себя формаль- [c.202]

    ФТОРИСТЫЙ ВОДОРОД — ПЯТИФТОРИСТАЯ СУРЬМА Насыщенные алифатические углеводороды легко карбонилиру-ются окисью углерода в жидком HF в присутствии SbF . Конечным продуктом реакции является карбоновая кислота, сложный эфир или кетон в зависимости от сольволиза реакционной смеси водой, спиртом илн углеводородом [1]. Активным промежуточным продуктом реакции является, по-видиыому, гексафтораитимонат карбо-пня. [c.511]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Нитрозосоединение образуется в качестве конечного продукта лишь тогда, когда у сс-атома азота уже нет в распоряжении атома водорода. В противном случае образуется оксимная форма, которая протонируется и дегидратируется в ион диазо-ния. Насыщенные алифатические диазосоедипения в условиях реакции неустойчивы и мономолекулярно распадаются на азот и ион карбония, который обычным образом реагирует с растворителем (образование спиртов, сложных и простых эфиров) или отщепляет протон, образуя олефин. Кроме того, распад Е обусловливает появление продуктов перегруппировки (ср. главу 8). [c.349]

    Простые разрывы алифатической цепи в соединениях с насыщенными заместителями, обобщенные в реакциях типа г , были обнаружены в видоизмененной форме и для алканов, содержащих ненасыщенные заместители. Так, например, сложные эфиры общей формулы С Н2п+1С02К образуют осколочные ионы состава СпНгпСОгК, причем пики этих ионов наиболее интенсивны при /г = 2, 6, 10 и т. д. Однако в отличие от этого в спектрах галоидных соединений наиболее интенсивный ион имеет состав С Н2пХ при п=4. Одно нз объяснений такой особенности фрагментации эфиров включает водородную перегруппировку, как показано на схеме (4.18), которая, однако, не имеет достаточного экспериментального подтверждения .  [c.126]

    Ассортимент хроматографически чистых веществ достигает 100 наименований. В него входят насыщенные алифатические и ароматические углеводороды, алифатические спирты, кетоны, простые и сложные эфиры, галогенпроизводные и др. [c.68]

    Ряд соединений из группы сложных эфиров этилфосфиновой кислоты содержал алифатический радикал, насыщенный в разной степени хлором в одном случае имел место дихлорвиниловый радикал, а в другом — тетрахлорэтиловый. По своей фармакологической активности хлорсодержащие соединения слабее, чем содержащие нитрофениловый радикал. Здесь происходит значительное снижение антихолинэстеразного действия, исчезает миотическое действие и снижается токсичность (см. табл. 2). [c.442]

    В пробирке сильно встряхивают 2 мл холодной концентрированной серной кислоты с 1 мл анализируемого вещества. Не растворяются насыщенные и ароматические углеводороды, а также их нитро- и галогенопроизводлые. Ненасыщенные углеводороды, спирты, простые и сложные эфиры растворяются обычно без окрашивания. Алифатические или алифатическо-ароматические жарбонильные соединения растворяются с потемнением. [c.120]

    Сложные эфиры ароматических гидроксикетонов. В этом разделе речь идет в основном о эфирах производных гидроксибензофенона и карбоновых кислот. Для светостабилизации галогенсодержащих полимеров можно применять различные сложные эфиры 2,4-диги-дроксибензофенонов, такие, как салицилаты [607], диэфиры алифатических дикарбоновых кислот, например адипаты [600, 673], акрилаты или метакрилаты [670], эфиры насыщенных жирных кислот, например 2-этилгексаноат или бензоат [957, 1818], эфиры эпоксикар-боновых кислот, например 9,10,12,13-диэпоксидеканоат [944], или эфиры ненасыщенных жирных кислот, нанример линолеаты [974]. Последние три соединения применяются также нри стабилизации полиамидов, полиэфиров и других полимеров. [c.220]

    Как душистые вещества имеют применение алифатические насыщенные спирты нониловый, дециловый, ундециловый и ла-уриловый. Общий метод определения содержания этих спиртов — ацетилирование в пиридине при комнатной температуре. Перечисленные спирты могут быть получены восстановлением сложных эфиров соответствующих кислот или окислением парафинов с последующим выделением из смеси ректификацией. В спиртах, полученных восстановлением сложных эфиров, могут присутствовать в виде примесей сложные эфиры, альдегиды-и свободные карбоновые кислоты. Для анализа смеси спиртов могут применяться методы хроматографического разделения нэ бумаге в виде антранилатов [1] или газовой хроматографии [2], [c.233]

    Однако некоторые растворы пленкообразующих, весьма далекие от состояния насыщения, соответствующего верхнему пределу растворимости, обладают нижним пределом растворимости, по достижении которого раствор мутнеет. При стоянии этого раствора образуются два слоя, из которых верхний состоит из чистого растворителя. Так, например, твердые сорта эпоксидных смол, которые во многих алифатических кетонах и сложных эфирах образуют высококонцентрированные растворы, при ра.збавлении тем же растворителем выпадают в осадок. При этом можно определить нижний предел растворимости (минимальное содержание сухого остатка). Другим примером того же эффекта является способность тощих масляных лаков к разбавлению уайт-спиритом. Она определяется максимальным объемом уайт-спирита, который [c.264]


Смотреть страницы где упоминается термин Насыщенные алифатические сложные эфиры: [c.32]    [c.337]    [c.225]    [c.211]    [c.301]    [c.74]    [c.606]    [c.515]    [c.512]    [c.530]    [c.222]   
Смотреть главы в:

Определение строения органических соединений -> Насыщенные алифатические сложные эфиры




ПОИСК





Смотрите так же термины и статьи:

Алифатические эфиры



© 2025 chem21.info Реклама на сайте