Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть колориметрическое

    Поглощение паров ртути различными адсорбентами изложено в [6,33]. Наилучшими и более удобными сорбентами ртутных паров являются золотые поглотители, позволяющие после накопления ртути отгонять ее (для определения методом атомной абсорбции). Для определения ртути колориметрическими мето- [c.72]

    Предложено применять для разрушения также азотную кислоту [545], смесь азотной и серной кислот [545], азотной кислоты с перманганатом калия [1110], перекись водорода в присутствии солей железа и хрома в качестве катализаторов [975], кипящую серную кислоту [777]. Описаны методики, предусматривающие выделение ртути (после обработки пробы азотной кислотой) цементацией медью [671] или фильтрацией раствора через сульфид кадмия. В большинстве случаев определяют ртуть колориметрически с дитизоном [458, 733, 777, 923, 1027, 1110, 1266], ди-2-нафтилтиокарбазоном [672, 739, 901, 990], реже с иодидом [75, 347] и другими реагентами [545]. [c.176]


    Растительные материалы и пищевые продукты. Разработана методика определения малых количеств ртути в растениях [1283], картофеле [1187], пшенице [956], зернопродуктах [606, 1125, 1187], яблоках [411, 1213, 1271], пищевых продуктах [649, 1125, 1283], рыбе, яйцах [1048]. Разлагают анализируемые материалы смесью серной кислоты с перманганатом калия, в полученном растворе определяют ртуть колориметрическим или другими методами. Приводим пример определения ртути в пищевых продуктах [1124]. [c.178]

    Методика определения. Основные положения. Принцип мето-д а. Метод основан на деструкции анализируемой пробы смесью азотной и серной кислот в присутствии этилового спирта и дальнейшем определении ртути колориметрическим способом или при помощи тонкослойной хроматографии. [c.241]

    Лучшие результаты колориметрического определения получаются при использовании ряда органических реактивов, из которых наибольшее применение имеет дитизон. Этот реактив образует окрашенные соединения не только с ионами свинца, но реагирует также с ионами многих других металлов, например ртути, серебра, меди, цинка, кадмия и т. д. Однако с различными ионами дитизон реагирует при разных условиях, в частности, большое значение имеет величина pH среды. При подборе соответствующей кислотности раствора можно определить свинец в присутствии некоторых из перечисленных ионов другие необходимо предварительно отделить. [c.260]

    В основу колориметрических методов определения положены цветные реакции- с реактивом Дениже (раствор суль-фата ртути II)—оранжевое окрашивание при pH 6,5—7,2 с раствором нитрата серебра — красное или розово-красное окрашивание (в зависимости от концентрации рибофлавина). [c.405]

    Колориметрическому определению висмута не мешают вводимая при анализе ртуть и присутствующее в свинцовом блеске железо. [c.24]

    Хлориды в сере Колориметрический по обесцвечиванию комплекса ртути (I) с дифенилкарбазоном 0,02 мкг С мл - [232] [c.220]

    Рекомендован следующий способ приготовления поглотителя 100 г крупки смешивают с 10 мл иодидного раствора (2 г иода, 8,5 г KJ, S мл глицерина, 90 мл этанола) и сушат при перемешивании до исчезновения запаха спирта и образования плотной пленки на стекле. Поглотитель помещают в пробирки (диаметром 10 мм с сетчатым дном) в количестве 3 мл. Поглощенная элементная ртуть вымывается из пленочного сорбента теплой дистиллированной водой, и полученный раствор иодида ртути используется для колориметрического определения. [c.71]


    В трубку с налетом ртути после возгонки приливают пипеткой 1 мл 1 %-ного раствора иода в 10%-ном растворе КI, после растворения ртути добавляют 4 мл воды, встряхивают и оставляют на 5—7 мин. Раствор переносят в колориметрическую пробирку емкости 25 мл, трубку ополаскивают раствором медно-сульфидного комплекса (3 мл) и жидкость присоединяют к основному раствору в колориметрической пробирке. Переливают и дают осадку отстояться. [c.146]

    Приготовление шкалы стандартных растворов. В колориметрические пробирки емкостью 25 мл помещают 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 мл стандартного раствора, содержащего 10 мкг ртути в 1 мл, и доливают 0,2%-ным раствором иода в 2%-ном растворе KJ до 5 мл. В каждую пробирку прибавляют по 3 мл раствора медно-сульфидного комплекса, хорошо взбалтывают и дают отстояться. [c.147]

    В ряде работ для определения ртути в рудах и других природных продуктах предлагается использовать колориметрический метод, основанный на реакции с дитизоном [625, 636, 1079]. Определению предшествует отделение ртути возгонкой или же кислотное разложение анализируемого материала. Этот метод более трудоемок, чем другие, описанные выше, и требует определенного опыта у аналитика. [c.147]

    Гладышевой [77] были исследованы методы определения микрограммовых количеств ртути в продуктах свинцового производства, наиболее часто применяемые в настоящее время в заводских и рудничных лабораториях гравиметрический, основанный на взвешивании амальгамы золота титриметрический роданидный и колориметрические по Полежаеву [247, 248] и дитизоновый. Метод определения после отгонки на золотую крышку [363] и роданидный [288] метод применимы лишь для содержаний ртути порядка сотых долей процента и выше. Колориметрический метод Полежаева позволяет определять тысячные доли процента ртути в твердых материалах, однако использовать его для анализа продуктов свинцового производства нельзя, так как содержащийся в пробах таллий возгоняется вместе с ртутью и придает окраске медно-ртутного иодидного комплекса оттенок, отличный от окраски стандартного раствора. На основании проведенных исследований для определения ртути в продуктах свинцового производства (руды, концентраты, огарки, пыли и другие материалы) рекомендуется отгонка ртути на золотую крышку с последующим титрованием раствором дитизона [77]. [c.153]

    После расслаивания слой дитизоната ртути сливают в пробирку и повторяют экстрагирование с новой порцией дитизона до тех пор, пока не перестанет изменяться зеленая окраска дитизона. По окончании экстрагирования окрашенные растворы дитизоната ртути сливают в одну пробирку, в другую пробирку сливают растворы, имеющие смешанную окраску за счет дитизона и дитизоната ртути. Количество дитизоната ртути в пробирке со смешанной окраской устанавливают колориметрически, прибавляя к I мл дитизоната ртути дитизон до уравнивания окраски со смешанной окраской пробы. [c.154]

    Определяют ртуть в металлах высокой чистоты экстракционно-колориметрическими, спектральными и химико-спектральными методами, методами нейтронно-активационного анализа. Иногда применяют полярографический метод и методы атомной абсорбции. [c.154]

    Колориметрические методы. Колориметрические методы определения ртути начали усиленно разрабатываться в 60-х годах и преимущественно были основаны на использовании дитизона. В табл. 21 приводятся методики колориметрического определения ртути в металлах, нашедшие применение в практике заводских и исследовательских лабораторий. [c.154]

    Радиоактивационный метод. Иногда чувствительность колориметрических и спектральных методов определения ртути в металлах высокой чистоты ниже, чем это требуется по техническим условиям. Применение нейтронного активационного анализа с использованием ядерных реакторов, в которых создаются потоки тепловых нейтронов 5-10 —10 нейтрон см -сек, позволяет определять 10 —10 % ртути в различных металлах. [c.156]

    Колориметрические методы рекомендованы для определения ртути в строительных материалах [404] и катализаторах [426]. Для определения ртути в алюминии и продуктах его коррозии использован спектральный анализ [582. Последний метод применен также для определения примеси ртути в окиси меди [92], окиси бериллия [867] и других веществах [1075], Методом атомной абсорбции определяли примеси ртути в неорганических веществах [1329] и растворах кислот [279], гидроокиси лития [625]. Метод нейтронного активационного анализа предложен для определения примесей ртути в карбонате и гидроокиси лития [602. Описана методика активационного определения микропримеси ртути в реактивах, используемых обычно при химическом определении ртути (кислоты, дитизон, тиоацетамид, цистеин и др.) [543]. [c.158]


    Ртуть определяют в большинстве случаев различными колориметрическими методами, основанными на реакциях с неорганическими [247—249, 262—267] и органическими реагентами. Гравиметрические методы в настоящее время не используются. [c.165]

    Одним из широко применяемых ранее методов был колориметрический метод, основанный на определении ртути по интенсивности окраски золя сульфида ртути [264, 265]. Для определения ртути в воздухе рекомендованы дифенилкарбазон и дитизон [264]. [c.166]

    В работах [186, 381] был использован диэтилдитиокарбамат для экстракционного концентрирования ртути при ее определении химико-спектральным или колориметрическим методом в природных водах. [c.172]

    В ряде случаев органические вещества и биологические материалы разлагают сжиганием в кислородной бомбе под давлением 25 —30 атм. Пары ртути улавливают раствором перманганата в серной кислоте и далее ртуть определяют колориметрически с дитизоном. Этот метод был применен для определения ртути в бумаге [1124], в нефтях, пищевых продуктах, внутренних органах и других биологических материалах. [c.175]

    Описаны колориметрический [795, 1074] и спектрографический анализы ртутьорганических соединений (уксуснокислая фенил-ртуть) [654]. [c.175]

    Моча. Методам определения ртути в моче посвящены многочисленные работы [912, 997, 1339]. Применяют в основном колориметрические [75, 347, 526, 671, 739, 975, 990, 1027, 1110, 1270, 1314] и полярографические методы [526]. В последнее время для этой цели применяют атомную абсорбцию [268, 912, 997, 1037]. [c.176]

    Колориметрический с родо-нидом аммония Колориметрический с сулемой нли бромной ртутью Колориметрический с димет-тилглиоксимом [c.462]

    Н. Г. Полежаев и Г. Плисецкая для определения содержания паров ртути в воздухе применяли раствор иода в 1ИОДИСТОМ калии и 1апределял1и концентрацию ртути. колориметрическим методом. [c.86]

    Для определения общего содержания хлоридов взвешенный образец углеводорода перемещают в делительную воронку, содержащую толуол. Для быстрого перевода органических галогенсодержащих соединений в неорганические добавляется реактив дифенил натрия. Избыток реактива разрушается, смесь подкисляется. После расслоения смеси на отделенные фазы водная фаза сливается и анализируется на содержание хлоридов колориметрическим методом. В качестве определяющего реагента используется ртуть (2) роданоферриатный ионный метод. Интенсивность окраски роданоферриатного раствора измеряется при длине волны 460 нм, а концентрация хлорид-иона определяется непосредственно по калибровочному графику. [c.14]

    Другие реакции имеют более широкий диапазон применения. Например, малорастворимая в воде хлораниловая кислота, растворы которой интенсивно поглощают свет в зеленой области спектра, образует осадки с такими катионами, как кальций, стронций, барий и цирконий. Уменьшение оптической плотности раствора при образовании осадков можно использовать для определения катионов. Этот реагент пригоден и для колориметрического определения анионов. Например, малорастворимый хлоранилат бария в присутствии следовых количеств сульфата переходит в нерастворимый в воде сульфат бария, а эквивалентное количество хлораниловой кислоты переходит в раствор. Содержание ее можно определить по увеличению светопоглоще-ния раствора. Аналогично можно проводить анализ хлоридов и фторидов в растворе, используя хлоранилаты ртути или лантана. [c.366]

    Количественное определение производят биологическим путем, основанным на способности адреналина повышать кровяное давление v кроликов. благичарм сужению у них сосудов. В литературе описаны различные колориметрические методы определения адреналина (с персульфатом калия, солями ртути, фосфорно-мачибдеиовой, фосфорно-вольфрамовой кислотой и др.). [c.243]

    Сульфиты определяют прямым иодометрическим методом или отгоняют SOj, поглощают ее раствором NaOH и иодометрически титруют этот раствор. Прямое определение используют при содержании сульфитов >0,5 мг л и при отсутствии мешающих веществ. При содержании сульфитов 0,02 мг/л их колориметрически определяют с фуксином. Для устранения влияния сульфидов к пробе добавляют 1 мл насыщенного раствора хлорида ртути (И). [c.184]

    Определение галои-дов в сере основано на сжигании образца, поглощении продуктов тридистиллятом и упаривании со щелочью. Полученный раствор солей обрабатывают сильным окислителем, газовый поток очищают, галоиды собирают в ловушку, охлаждаемую жидким воздухом, и определяют спектроскопически. Чувствительность определения хлора 10 %, брома и иода — 10 % [7]. Определение хлоридов в сере описано в работе [232]. Используются нефелометрический, линейно-колористиче-ский и колориметрический методы. Последний основан на разрушении хлоридами окрашенного соединения ртути (II) с дифенилкарбазоном. Применение бензола увеличивает чувствительность метода до 0,16 мкг, а хлороформа — до 0,02 мкг в 1 мл. Средняя ошибка определения 4—10%. [c.217]

    Методы отгонки ртути с конденсацией паров на холодной стеклянной поверхности с последующим растворением и объемным или колориметрическим определением ртути также получили большое распространение. Широкое применение в практике определения ртути в различных рудах получила отгонка ртути в трубках Пен-фильда [9, 755, 756J. [c.63]

    Метод вакуумной дистилляции применяют для выделения ртути из различных материалов и как метод концентрирования металлов-примесей в нелетучем остатке при анализе ртути и амальгам. Отгонка ртути в токе азота была использована для концентрирования малых количеств Си, Ag, Ли, Zn, Сс1, Оа, 1п, Т1, Ое, Зп, В1, Сг, Мо, Ве, Со, N1, В]з, Рс1, Ви, 1г и Рь [706]. Отстаток после отгонки ртути, находяш ийся в кварцевом тигле, взвешивали и анализировали полярографически и колориметрически на содержание перечисленных металлов. [c.67]

    Тетраиодид ртути(П) HgJ4 может взаимодействовать с солями меди в присутствии восстановителя с образованием красной комплексной иодистой соли uJ HgJ2 [260—262]). На этом основано колориметрическое определение ртути в воздухе [42 43, 89, 183,. 339], в растворе [2481, в природных объектах [367, 400]. Метод известен в литературе как метод Полежаева [139, 140, 143, 145,. 147, 247, 249]. [c.105]

    Для определения ртути в рудах и горных породах используются гравиметрические, титриметрические, колориметрические, спектральные и электрохимические методы. Применение того или иного метода оэусиовиено содержанием ртути в анализируемомУмате-риале, необходимой точностью и временем определения, а также технической оснащенностью лаборатории. Ниже рассмотрены методы, нашедшие широкое практическое применение. [c.142]

    Колориметрические методы. Для определения малых количеств ртути в рудах с содержанием 10 —10 % рекомендована методика [122], предложенная Финкельштейном и Петропавловской [367], основанная на колориметрировании ртутно-медного иодидного комплекса uHgJg. [c.145]

    Зыка С Сотр. [966, 967] предложил методику колориметрического определения ртути в рудах с меркупралем, в основу которой положено разложение навески смесью азотной и соляной кислот, отгонка ртути в виде хлорида, экстракция окрашенного комплекса ртути бензолом и измерение оптической плотности экстракта при длине воЛны 420—430 нм. Метод проверен на рудах и баритах, где содержание ртути составляло 10" —10 %. [c.147]

    Серебро Растворение в HNO3, фракционная экстракция ртути дитизоном Колориметрический с дитизоном 10-6 [119, 682] [c.155]

    Цинк Растворение в HNO3, разрушение избытка HNO3 мочевиной, фракционная экстракция ртути в кислой среде дитизоном Колориметрический с дитизоном 1.10-1 [682] [c.155]

    Ход анализа. iHaBe Ky пробы (0,2—0,5 г) в зависимости от содержа-. ния ртути, смачивают водой, добавляют 1 г перманганата калия, 0,5 г фторида аммония, приливают 15—20 мл H2SO4 (2 1), накрывают колбу стеклянной воронкой с обрезанным концом и осторожно нагревают. Выпаривают до паров сернистого ангидрида, снимают воронку и продолжают нагревание 1 часа. После этого охлаждают содержимое колбы, приливают 10 мл воды, добавляют 0,2 г перманганата калия, хорошо перемещивают и добавляют по каплям 15%-ный раствор перекиси водорода до осветления раствора (разрушение двуокиси марганца). Добавляют 30 мл воды и кипятят до полного разрушения перекиси водорода около 30 мин. Охлаждают, разбавляют водой и определяют ртуть в зависимости от ее содержания объемным роданид-ным или дитизоновым колориметрическим методом. [c.162]

    Ход анализа [248]. Через два последовательно соединенных прибора, Содержащих по 1 мл поглотительного раствора (растворяют 2,5 г во-зогнанного иода и 30 г иодида калия в небольшом количестве воды и доводят объем до 1 л дистиллированной водой), протягивают 5—10 л воздуха со скоростью 0,5—1 л мин. По окончании отбора пробы в поглотительный прибор добавляют по 1—2 капли 0,1 N раствора иода, затем во все пробирки стандартной шкалы (в колориметрические или центрифужные пробирки) вносят 0 0,2 0,4 0,6 0,8 1,0 мл стандартного раствора, что соответствует 0 0,2 0,4 0,6 0,8 1,0 мкг ртути. [c.166]

    Предложен метод определения ртути в почвах (чувствительность 1-10 %), основанный на разложении проб концентрированной серной кислотой в присутствии перманганата калия или на отгонке ртути в трубках Пенфильда и растворении отогнанной ртути в азотной кислоте с последующим колориметрическим определением с дитизодом [52, 907]. [c.170]

    Для определения ртути в природных водах распространены колориметрические методы с предварительным концентрированием ртути [274а1. Для этой цели используются также спектральные и атомно-абсорбционные методы. В работе [74] определяли ртуть в промышленных водах колориметрически по реакции с диэтилдитиокарбаматом меди. В этой работе были предложены методики определения различных форм ртути общего содержания после разрушения органических веществ, содержания неорганических соединений ртути и содержания ртути в виде органических соединений по разности. [c.171]


Смотреть страницы где упоминается термин Ртуть колориметрическое: [c.334]    [c.23]    [c.24]    [c.69]    [c.155]    [c.155]    [c.171]   
Практическое руководство по неорганическому анализу (1966) -- [ c.255 ]

Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.232 , c.233 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.775 ]




ПОИСК







© 2024 chem21.info Реклама на сайте