Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явления кристаллах

    Должен существовать физический механизм, приводящий к взаимодействию явления (кристалла) и воздействия. [c.19]

    Температуру потения следует повышать медленно. Принимают, что при +32° происходит превращение чешуйчатого парафина в кристаллические иглы. Это явление сопровождается некоторой усадкой и через образующиеся промежутки между кристаллами может стекать масло. Процесс потения очень продолжителен (до 70 час.) [42]. [c.48]


    На величину окклюзии влияет также скорость приливания осадителя. Известно, что при медленном приливании осадителя получаются обычно более чистые осадки. Это может зависеть, отчасти, от того, что при медленном осаждении образуется более крупнозернистый, с меньшей поверхностью осадок. Но поскольку при образовании кристаллических осадков явления адсорбции играют сравнительно малую роль, более вероятно допущение, что медленный рост кристаллов способствует уменьшению окклюзии, так как при этом легче протекает процесс замены адсорбированных на поверхности кристаллов ионов примесей собственными ионами осадка. [c.115]

    Образование смешанных кристаллов — изоморфизм. Изучение явлений соосаждения показало, что большое значение при соосаждении имеет также изоморфизм. Напомним, что изоморфными называются такие вещества, которые способны кристаллизоваться, образуя совместную кристаллическую решетку, причем получаются так называемые смешанные кристаллы. [c.115]

    Что такое изоморфизм Смешанные кристаллы Приведите примеры. Какую роль играет изоморфизм в явлениях соосаждения  [c.159]

    Гамма-спектроскопия основана на эффекте резонансного поглощения атомными ядрами 7-квантов (эффект Мессбауэра). При радиоактивном распаде ядер образуются изотопы в возбужденном состоянии. Их переход в основное состояние сопровождается 7-излучением. Невозбужденные атомные ядра в свою очередь могут поглощать 7-кванты и переходить в возбужденное состояние. Однако это явление возможно лишь в строго определенных условиях. Например, 7-излучение возбужденных ядер Ре одной металлической пластинки может поглощать невозбужденные ядра Ре другой пластинки. Если же источник и приемник 7-лучей находятся в разных соединениях (например, источник Те в металле, а поглотитель — в кристалле РеСЬ), то поглощение 7-лучей наблюдаться не будет. [c.148]

    Характерная картина образования кристаллических агрегатов может наблюдаться при добавлении к раствору мелкокристаллического парафинистого продукта в углеводородном растворителе какого-нибудь осадителя, например кетона, дихлорэтана и др. При этом происходит следующее. При растворении продукта в бензоле или в бензине и последующем охлаждении образуется раствор, содержащий неагрегированные кристаллики парафина, относительно равномерно рассеянные по всей массе раствора при добавлении к раствору осадителя понижается растворимость находящихся в нем как твердых, так и жидких компонентов обрабатываемого продукта. Это приводит к выделению из раствора и адсорбции на поверхности кристалликов некоторого количества наиболее высокомолекулярных и малорастворимых жидких компонентов. Введение осадителя сопровождается, возможно, также и изменением электрического заряда частиц (кристаллов) парафина. В результате указанных явлений разрозненные кристаллики парафина начинают собираться сначала в хлопья, а затем в комки, т. е. происходит агрегация кристалликов, аналогичная коагуляции дисперсной фазы коллоидного раствора. На рис. 11 [c.74]


    Неполнота смачивания кристалликов парафина маслом и стремление пх выделиться и удержаться на поверхности раздела масло — воздух позволяют использовать это явление для отделения парафина от масла, т. е. применить для отделения парафина метод флотации, который заключается в следующем. Охлажденный парафинистый продукт, содержащий взвесь кристаллов парафина, продувают мелкораспыленным воздухом. Прп продувке кристаллики парафина прилипают к пузырькам воздуха и вместе с ними всплывают на поверхность в виде пены, обогащенной парафином. Прп повторных продувках воздухом Д ожно полностью удалить пз обрабатываемого продукта всю находящуюся в нем взвесь парафина. [c.136]

    Процесс очистки экстракцией основан на явлениях диффузии и поэтому его эффективность зависит от размера гранул очищаемого продукта. Более того, показано что при одинаковых размерах гранул эффективность экстракции зависит от характера кристаллов. Авторы работ описали интересные опыты. Проведя синтез дифенилолпропана в присутствии H I и отделив непрореагировавшие компоненты дистилляцией, они кристаллизовали расплавленный дифенилолпропан-сырец двумя путями быстрым охлаждением на барабане и медленным охлаждением естественным путем, для чего расплавленный дифенилолпропан выливали на стеклянный поднос тонким слоем. В последнем случае застывший дифенилолпропан [c.167]

    Авторы объясняют это явление тем, что при медленной (естественной) кристаллизации дифенилолпропана примеси скапливаются в менее многочисленных, но в более крупных каналах между кристаллами, чем в случае быстрой кристаллизации. В такие каналы растворитель проникает свободнее и полнее выводит оттуда примеси. [c.168]

    Отверстия, возникшие вследствие кристаллизации. Эти силы проявляются при росте кристаллов, находящихся на стенках пор и других отверстий. В некоторых случаях возникают силы, вполне достаточные, чтобы расширить трещины и сделать их доступными для циркуляции в них жидкости. Подобной причиной можно объяснить ряд явлений, происходящих в некоторых минеральных жилах. Но эти явления, по-видимому, не играют значительной роли в нефтяных месторождениях. Кристаллы кальцита и других веществ, которые мы встречаем в трещинах известковистых песчаников и среди сланцев, не являются причиной возникновения этих трещин и скорее вызывают местную закупорку ранее образовавшихся пор. [c.152]

    Следует заметить, что образование тонких жидких слоев в контакте с кристаллической фазой при температуре, близкой к температуре плавления объемного кристалла, наблюдается не только для воды, но и для ряда других жидкостей [332, 333]. Следовательно, рассмотренные здесь явления переноса незамерзающих прослоек и пленок могут иметь более общее-значение. [c.115]

    Что подразумевается, когда говорят, что энтропию, S, можно вычислить из выражения S = /с1п И , в котором число эквивалентных способов расположения молекул для получения одинакового наблюдаемого результата Почему газ обязательно должен иметь более высокую энтропию, чем кристалл из того же вещества На такие вопросы трудно ответить, рассматривая объекты и явления реального мира, если мы не хотим увязнуть в математических выкладках. Это гораздо легче сделать в воображаемой Вселенной , состоящей всего из четырех атомов, которые могут располагаться только в девяти различных клетках. [c.57]

Рис. 17.9. Иллюстрация явления рассеяния кристаллом. Рис. 17.9. Иллюстрация <a href="/info/647046">явления рассеяния</a> кристаллом.
    Вследствие разнообразия причин, вызывающих термическую дезактивацию катализаторов, часть из которых связана с самой сущностью каталитических явлений, нет возможности наметить общие пути повышения термостабильности катализаторов. Как правило, катализаторы на носителях более термостойки. Это объясняется тем, что в качестве носителей применяют высокоплавкие соединения, а нанесенные на них пленки металлов или низкоплавких окислов при повышении температуры близко к температуре плавления все же не дают явлений спекания. Однако если активные компоненты не образуют пленку на носителе, а осаждаются друзами кристаллов или сферолитами, то применение носителя может и не привести к повышению термостабильности. [c.200]

    Такое явление -называется полиморфизмом. Например, ярко-красный иодид ртути Hgb, образующий при нормальных условиях кристаллы тетрагональной сингонии, при 131 °С превращается в ярко-желтую ромбическую форму. [c.141]

    Электрический момент ряда кристаллов возникает при приложении к ним механического напряжения. Это явление, открытое братьями Кюри в 1880 г., называется прямым пьезоэлектрическим эффектом. Если же к таким кристаллам приложить электрическое поле, то они деформируются - обратный пьезоэлектрический эффект, для которого [c.38]

    Интенсивный износ стенок (кавитационная эрозия) в зоне конденсации паровых пузырьков при длительной кавитации. Механизм этого явления до настоящего времени освещен не полностью. Опыты показали, что разрушение поверхностей — результат механического воздействия на них точечных гидравлических ударов ( бомбардировок ), а электрохимические и химические процессы существенной роли не играют. Под влиянием колебаний давления, частота которых достигает 2500 Гц, материал стенок устает, и в нем появляются ослабления и трещины. Расчлененные зерна подвергаются колебаниям изгиба, что завершается их изломом в плоскостях спайки кристаллов и полным удалением. В образующуюся каверну проникает жидкость, смешанная с паром, и разрушение прогрессирует. Разъеденная поверхность приобретает губчатую текстуру. [c.146]


    Одним из основных вопросов, решаемых при расчете кристаллизаторов, является описание кинетики кристаллизации, состоящей из стадий создания пересыщения, -образований зародышей и роста кристаллов. Она также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновения между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физикохимические свойства раствора, конструкция аппарата и т. д. Детальное описание явлений и факторов, сопровождающих процессы массовой кристаллизации из растворов и газовых смесей, дано в монографии [17]. Важное значение имеет также описание условий равновесия между сосуществующими фазами (твердое вещество—жидкость, твердое вещество—газ (пар)). На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процессов кристаллизации, а также перекристаллизации. [c.90]

    С макроскопической точки зрения явления роста (растворения) кристаллов, диффузии молекул растворенного вещества к грани кристалла (или от нее), выделение скрытой теплоты кристаллизации (растворения) и переноса тепла в жидкой и твердой фазах, формирование полей концентраций, температур, скоростей в окрестности отдельного кристалла можно отнести к классу детерминированных систем. Однако системам присущи и явления стохастического характера зародышеобразование, агломерация и [c.3]

    Теоретическое рассмотрение вопроса об избирательной кри-аллизации одного антипода привело ряд авторовк вьь ду о возможной роли этих и аналогичных явлений (кристалли-ция соединений включения) в появлении оптической активности органическом мире. [c.202]

    Знакомясь с литературой о количестве правых и левых многогранников при кристаллизации, происходящей вне тела организмов, я встретился с неясностью конечного результата и счел необходимым проверить этот результат в природном процессе. Я остановился на одном из наиболее кристаллографически изученных тел — на кварце. Работа была. проделана по моему указанию Г. Г, Леммлейном в лаборатории кристаллографии Академии наук. Были изучены а-кварцы и р-кварцы для каждой полиморфной разности из одного определенного месторождения. Оказалось, что при достаточном числе их — несколько сот для а-кварцев — отношение правых к левым приближается к единице тем точнее, чем больше количество монокристаллов [51] Это показывает, что коренной пространственной разницы между правизной и левизной в этих явлениях кристаллов, которую мы наблюдаем в живых организмах, здесь нет. Как доказали позже советские геометры. и кристаллографы ( 127), правые и левые кварцы находятся в одном и том же Эвклидовом тррхмерном од-нородном векториальном пространстве, но принадлежит к разным федоровским группам ( 127). Таким образом, ясно, что нельзя сравнивать кристаллизацию в кристаллическом пространстве и кристаллизацию в теле живых организмов. [c.161]

    Один и тот же элемент может образовывать несколько разных типов простых веществ, называемых аллотропными модификациями. В настоящее время известно свыше 400 разновидностей простых веществ. Явление аллотропии может быть обусловлено либо различным составом молекул простого вещества данного элемента (аллотропия состава), либо способом размещения молекул или атомов в кристаллах (аллотропия форм ы). Сгюсобность элемента к образованию соответствующих аллотропных модификаций обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов. [c.232]

    В последующем отдельные исследователи возражали против описанного выше объяснения механизма структурного застывания нефтяных продуктов и делали попытки дать иное разъяснение этому явлению. Так, например, указывалось, что структурное застывание масел наступает в ряде случаев до того момента, когда кристаллы парафина образуют сплошную пространственную сетку. К. О. Рамайя [28] считает, что структура застывшего продукта обусловливается не кристаллической сеткой парафина, а образующимися в масле мицеллами высокоассоциированных масляных молекул , которые, по мнению Рамайя, и обусловливают образование гелеобразной структуры и застывание масла. Д. О. Гольдберг [29, не отрицая роль парафина в застывании нефтяных продуктов, объясняет явление самого застывания возникновением вокруг кристалликов (частичек) парафина сольватных оболочек, которые, по мнению Д. О. Гольдберг, достигают якобы таких размеров, что иммобилизуют всю массу масла. [c.15]

    Точка зрения, согласно которой структурное застывание нефтяных продуктов вызывается выделением кристалликов парафина с последующим соединенпем их в кристаллическую сетку, позволяет хорошо и исчерпывающе объяснить все происходящие при структурном застывании явления. Так, аномалия вязкости, возникающая при охлаждении нефтяного продукта незадолго до наступления структурного застывания, объясняется с этой точки зрения появлением дисперсной фазы в виде 1<ристалликов парафина (а в ряде случаев ультрамикроскопических кристаллических зародышей), еще не связанных между собой вследствие недостаточной их концентрации или присутствия мешающих соединению кристаллов веществ (смолистых, присадок-депрессаторов и т. д.), но уже способных вызывать аномалию вязкости. [c.16]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    Это значит, что с ростом температуры число активных центров на единицу поверхности сначала растет и, только начиная с определенной температуры, убывает. Подобные кривые невозможно объяснить, исходя из представления о спекании как о поверхностном плавлении активных центров или исходя из эффекта, связанного с уменьшением общей повмхности с повышением температуры. Это явление с позиций термодинамики было рассмотрено О. П. Пол-торакои, который исходил из следующей модели активные центры являются атомной фазой , адсорбированной на поверхности кристалла. При этом оказалось, что для мелкодисперсных кристаллов количество атомной фазы иа единицу поверхности уменьшается с ростом кристаллов. Таким образом, с изменением температуры протекают два конкурирующих процесса сначала при повыщении температуры обработки катализаторов увеличивается число дефектов, а следовательно, и их поверхностная концентрация ири дальнейшем повышении температуры увеличение числа дефектов и их подвижности приводит к росту кристаллов, а следовательно, к уменьшению поверхностной концентрации дефектов. [c.338]

    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    При хорошем прессова/1Ии порошков вещества образцы в капиллярах плавятся, начиная с верхних слоев. При наличии пузырьков воздуха наблюдается обратное явление, т. е. плавление начинается в нижних слоях, вверху же оно замедляется, так как верхние кристаллы отделяются от нижнего расплавленного слоя воздушной прослойкой. После выбивания пузырьков кристаллы опускаются вниз, т. е. тонут в расплавленном веществе. Температурой плавтения следует считать ту температуру, при которой появляются первые признаки плавления вещества, в капилляре. Экспериментальные и расчетные данные записать в таблицу по образцу  [c.193]

    Теория одноступенчатой кристаллизации была предложена Брэнсомом, Даннингом и Миллардом [13]. Ими было достигнуто удовлетворительное совпадение теоретически найденного распределения с экспериментальными данными, полученными при использовании небольшого лабораторного кристаллизатора непрерывного действия. Диапазон изменения размеров кристаллов оказался шире, чем при соответствующей кристаллизации в реакторе периодического действия. Этого, по-видимому, и следовало ожидать вследствие явления проскока. В годы войны автор настоящей работы и его сотрудники получили аналогичные результаты при проведении исследования роста кристаллов цик-лонита (Н. О. X.) в кристаллизаторе промышленного типа. Эти результаты опубликованы не были. [c.118]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

    Межъядерные расстояния у ионных молекул в газовой фазе значительно меньше, чем в соответствующих кристаллах. Например, межъядерное расстояние в Na l (г.) 2,36 А, тогда как в КаСЦтв.) минимальное межъядерное расстояние равно 2,81 А. Основываясь на рассмотрении рис. 14-9, где изображена структура Na l(TB.), объясните причину этого явления. [c.642]

    Наибольшей адсорбируемостью на активированном угле обладают парафиновые углеводороды нормального строения, которые характеризуются неравномерным распределением сил межмолекулярного взаимодействия. Наибольшее значение имеют силы, направленные перпендикулярно оси молекул нормальных парафинов. Такой характер распределения сил взаимодействия, а также значительные дисперсионные молекулярные силы в направлении, перпендикулярном оси углеводородной цепи, обусловливают ряд явлений, свойственных углеводородам с прямыми цепями способность ориентироваться параллельно Друг другу с образованием жидких кристаллов и совместная кристаллизация углеводородов разных гомологических рядов. Высказана [4, 5] гипотеза, согласно которой наибольшая адсор бируемость нормальных парафиновых углеводородов на угле обусловлена их взаимодействием с поверхностью угля под влиянием тех же дисперсионных сил, направленных перпендикулярно к оси углеводородной цепи. [c.261]

    Факт существования одного и того и<е соединения в нескольких формах, неразличимых по химическим свойствам, был известен задолго до появления работ Вант-Гоффа и Ле Беля. Данное явление было открыто в 1848 г. Пастером (Франция). Исследуя винную кислоту СООНСН(ОН)СН(ОН)СООН, он обнаружил, что это соединение существует в двух формах, которые тождественны по химическим свойствам, но различаются по асимметрии кристаллов кристалл одной фюрмы является как бы зеркальным изображением кристалла другой формы. Вант-Гофф объяснил наличие таких изомеров тем, что молекулы этих веществ содержат асимметрические атомы углерода. Действительно, в молекуле винной кислоты [c.55]

    Нередко также наблюдается явление изоморфизма — свойство атомов, иоиов или молекул замещать друг друга в кристаллической решетке, образуя смешанные кристаллы. Примером изоморфных веществ являются алюмокалиёв ые и хромокалиевые квасцы—KAI(S04)2-I2H2O и K r(S04) 2 I2H2O. Смешанные кристаллы являются совершенно однородными смесями твердых веществ — это твердые растворы замеш ения. Поэтому можно сказать, что изоморфизм — это способность образовать твердые растворы замещения. [c.141]

    Механическое возмущение может вызвать в пересыщенном растворе появление пары пузырек- кристалл. Это явление легко наблюдать экспериментально в условиях воздействия мощного ультразвука на раствор в зоне кавитации к поверхности раствора поднимаются пузырьки, а на дно падают кристаллы. При слабых докавитационных полях пузырек не вырастает, вновь растворяясь, а кристаллический зародыщ при наличии пересыщения продолжает расти. [c.148]

    Рассматривая совокупность физико-химических эффектов и явлений, имеющих место в процессе взаимодействия ансамбля кристаллов с раствором при наличии внешних воздействий, можно выделить пять уровней иерархии этих эффектов I) совокупность явлений на атомарно-молекулярном уровне 2) эффекты в масштабе надмолекулярных или глобулярных структур 3) множество физико-химических явлений, связанных с движением единичного кристалла, с учетом кристалло-химической реакции и явлений межфазного энерго- и массопереноса 4) физико-химические процессы в ансамбле кристаллов, перемещающихся стесненным образом в сплошной фазе 5) совокупность процессов, определяющих макрогидродинамическую обстановку в масштабе технологического аппарата в целом. [c.7]


Смотреть страницы где упоминается термин Явления кристаллах: [c.138]    [c.170]    [c.439]    [c.135]    [c.16]    [c.521]    [c.422]    [c.102]    [c.39]    [c.80]    [c.4]    [c.5]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.511 ]




ПОИСК







© 2025 chem21.info Реклама на сайте