Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм альдегидов

    Карбонильные соединения. Легкость замещения атомов водорода, находящихся в а-положении к карбонильной группе, зависит от характера заместителей при карбониле. Часто бывает трудно определить, идут ли реакции замещения по ионному или радикальному механизму. Альдегиды, наиболее реакционноспособные карбонильные соединения, при реакции с галогенами могут образовывать галогенангидриды или а-галогензамещен-ные альдегиды. Первый тип замещения протекает удовлетворительно лишь [c.530]


    При экспериментальном исследовании механизма самовоспламенения и образования начальных очагов пламени в топливовоздушной смеси в бомбах и одноцилиндровых установках, воспроизводящих условия рабочего процесса дизеля, перед появлением горячего пламени было обнаружено слабое свечение, сопровождающееся небольшим увеличением давления [161]. Было также установлено [158], что в период, предшествующий холодному свечению, происходит накопление органических пероксидов и альдегидов. [c.148]

    При нагреве гидроперекиси бурно распадаются по механизму свободных радикалов или, в присутствии кислоты, — по ионному механизму. В каждом случае образуются специфичные карбонильные и гидроксильные соединения. Третичные алкильные гидроперекиси разлагаются но связи 0—0, за которой следует разрыв слабейшей связи С—С. Вторичные алкильные гидроперекиси образуют кетоны, а первичные.— альдегиды. При высоких температурах первичные и вторичные перекиси в паровой фазе бурно разлагаются при этом образуется цепь размножающихся радикалов [15, 16]. [c.70]

    По цепному механизму протекают такие важные химические реакции как горение, взрывы, процессы окисления углеводоро. ов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакции служит научной основой ряда важных отраслей техники и химической технологии. [c.183]

    Если первые два продукта без труда укладываются в общий механизм, то объяснить образование кетона не так просто, если только среди первичных продуктов нет изомасляного альдегида. [c.193]

    Первое присоединение к двойной связи в комплексе определяет структуру продуктов (альдегида) в первом механизме это была бы реакция 3, превращающая я-связанный олефин в ог-связанную алкильную группу  [c.199]

    По радикальному механизму присоединения к олефинам осуществлен синтез ряда высокомолекулярных спиртов, альдегидов, кетонов и кислот. Радикалы К образуются из низкомолекулярных кислородсодержащих соединений по реакциям [c.82]

    Цепные реакции являются очень распространенными. По цепному механизму, на-Рис. 165. Схема развет- пример, могут совершаться многие реак-вляю щихся цепей. ции окисления углеводородов, в частности — важные в техническом отношении реакции получения альдегидов, спиртов, кислот, кетонов, перекисей и др. Н. Н. Семеновым было показано, что многие особенности процессов сгорания горючего в цилиндрах моторов двигателей внутреннего сгорания обусловлены цепным механизмом процесса. Процессы полимеризации, играющие важную роль в образовании высокомолекулярных соединений, большей частью протекают по типу цепных реакций, (В. А. Каргин, С. С. Медведев и др.) Большую роль цепные реакции играют в биологических процессах. Хорошо известно, что и процессы деления атомных ядер в кинетическом отношении могут протекать по типу цепных реакций. [c.486]


    Кроме надкислоты и карбоновой кислоты, другим продуктом окисления альдегидов являются ангидриды. Их образованию благоприятствуют применение смешанного катализатора (соли Со или Мп с солями Си) и пониженное парциальное давление кислорода. Один и 1 возможных механизмов образования ангидридов состоит в превращениях ацильного радикала в координационной сфере атома меди  [c.361]

    Механизм реакции аминирования спирта в присутствий гидрирующего катализатора заключается в дегидрировании спирта до альдегида, превращении последнего в альдегид-аммиак и восстановлении его до амина  [c.293]

    В работах Гесса [1], Мейзенгеймера [2], Пфейфера и Бланка [3], А. Н. Несмеянова и В. А. Сазоновой [4], посвященных механизму магнийорганического синтеза, механизм этого последнего изучался на относительно небольшом количестве примеров. Были изучены 1) бензальдегид бромистые изобутил-и этилмагний, 2) коричный альдегид магнийбромэтил, [c.221]

    Возникновение холодных пламен связано с развитием реакции, имеющей чисто цепной механизм. Подобный характер могут иметь реакции, при которых замедлены разветвления цепей такие разветвления называются вырожденными. Они обусловлены образованием сравнительно малоактивных и потому долгоживущих промежуточных продуктов. В широко распространенных процессах окисления кислородом углеродсодержащих горючих вырожденные разветвления обычно связаны с образованием перекисей и альдегидов. [c.29]

    Уже на ранних стадиях образуются спирты, кетоны и продукты окисления спиртов — альдегиды. Последние меняют механизм окисления и последующий процесс описывается схемой  [c.42]

    Изучение различных радикальных реакций с участием низших алканов служит основой для моделирования механизма процессов превращения сложных алканов. Это обусловлено тем, что, начиная с некоторой длины цепи радикала или молекулы, кинетические и термодинамические характеристики однотипных реакций замещения, присоединения или распада практически слабо зависят от природы радикалов. Аналогичная картина наблюдается для процессов с участием сложных соединений других классов (галоген-производных, спиртов, альдегидов, кетонов и кислот). [c.214]

    Механизм реакции, происходящей между альдегидом, избытком двуокиси серы и раствором, содержащим сульфокислоту, полученную из фуксина, послужил объектом очень тщательного исследования [1441. Результаты исследования могут быть кратко [c.130]

    Исследования окисления олефинов в кетоны на кобальт- и оловомолибденовых катализаторах привели к заключению, что наиболее вероятен второй механизм. Альдегиды и кислоты (побочные продукты) в условиях образования кетонов получаются через я- и я-аллильные комплексы (как и на других окислительных катализаторах)  [c.93]

    Рассматривая механизм альдегидо-кетонной перегруппировки, многие авторы2 -29о пытались найти некоторые общие правила перемещения радикалов и на этой основе составляли различные миграционные ряды радикалов в соответствии с их относительной подвижностью. [c.228]

    Другой способ основан на использовании индикатора — мономера, который способен полимеризоваться только по одному какому-нибудь механизму. С расширением арсенала методов полимеризации число таких мономеров-индикаторов непрерывно уменьшается, Все же считается, что изобутилен и циклические формали способны полимеризоваться только по катионному механизму, акрилаты — только по анионному и радикальному механизму, альдегиды (при атмосферном давлении) — только по ионному механизму. К числу мономеров, по-разному ведущих себя в зависимости от природы инициирующей системы, относятся диметилкетен и 2-ви-нилоксиэтилметакрилат. Оба под действием катионных инициаторов полимеризуются по двойной углерод-углеродной связи. При анионном инициировании кетен образует чередующийся сополимер из мономерных звеньев, содержаших связи С—С и С—О, Второй мономер при анионном инициировании полимеризуется по акрилатной группе, а при действии свободных радикалов — по обеим реакционным группам, образуя сшитый продукт. [c.200]

    По механизму специфического кислотного катализа протекают реакции гидролиза эфиров, ацеталей, гидратации ненасыщенных альдегидов, а специфического основного катализа — такие, как альдольная конденсация, гидратация альдегидов и др. [c.91]

    Катализированный кислотой обмен ацетона с Н201, обсужденный в предыдущем разделе, должен идти по аналогичному механизму. Однако присоединение спиртов к альдегидам и кетонам с образованием ацеталей (и их гидролиз) подвергается специфическому катализу Н [451, что указывает на то, что в гидролизе медленной стадией является диссоциация катиона  [c.490]

    Ре — Ре является то, что спирты, которые очень медленно реагируют непосредственно с перекисью, в присутствии Ре быстро окисляются до альдегидов [131]. Механизм, вероятнее всего, заключается в отрыве атома Н от спирта радикалом ОН (или НО2) с последующим окислением образовавшегося радикала ионами Ре . Найдено, что реакцию, протекающую в системе Ре — Н2О2 — СзНбОН, можно записать в виде [c.512]


    Самовоспламенение углево-дородо-воздушных смесей. Предпламенные реакции, приводящие к самовоспламенению углево-дородо-воздушных смесей, являются реакциями с вырожден-ными разветвлениями цепей, т. е. такими, в которых разветвление цепей обусловливается стабильными промежуточными продуктами-пероксидами и альдегидами. В зависимости от условий (Т, Р) механизм разветвления цепей может быть разным. Это обстоятельство служит причиной того, что экспериментально определенный характер зависимости критических параметров самовоспламенения (T a, Ркр) Для углеводородо-воздушных смесей (рис. 3.15) существенно отличается от полученного в теории теплового взрыва (см. рис. 3.14). Область самовоспламенения горючей смеси можно подразделить на три зоны — низкотемпературную, переходную и высокотемпературную. Зоны самовоспламенения различаются по характеру реакций, приводящих к разветвлению цепей (табл. 3.3). [c.131]

    Хотя природа поверхности оказывает несомненное влияние на продолжительность периода Tj и, вероятно, периода г. , она не имеет, согласно данным Дэя и Пиза [9], большого влияния на границы давление—температура областей холоднопламенного и высокотемпературного воспламенений. Эти исследователи, изучая систему пронан—кислород, получили картину, подобную изображенной на рис. 2 в пирексовых сосудах, обработанных азотной или фтористоводородной кислотами или покрытых КС1. В последнем случае наблюдалось значительное удлинение индукционного периода, особенно при низких температурах. Анализ продуктов, полученных в серии опытов с применением аналогичной обработки, показал наличие перекисей во всех сосудах, кроме покрытых КС1. На основании этих фактов Дэй и Пиз высказали сомнение относительно роли перекисей в механизме образования холодного пламени, и одновременно, подняли вопрос о влиянии ацетальдегида в связи с тем, что, согласно более раннему исследованию Пиза [34], покрытие стенок сосуда слоем K I обусловливает значительно более низкую концентрацию ацетальдегида, чем в сосудах без такого покрытия. По нашему мнению, так как реакция не обнаруживает тенденции к достижению стационарного состояния, обрыв цепей на поверхности сосуда мон ет лишь замедлить скорость реакции, но не способен полностью предотвратить достижение критических концентраций альдегидов и перекисей, вызывающих образование холодйого пламени. Эти критические концентрации зависят главным образом от давления и температуры и достигаются спустя более или менее длительное время в зависимости от природы поверхности. То обстоятельство, что в непрерывной системе не обнаружены перекиси в покрытой КС1 трубке, не свидетельствует против их кратковременного существования аналогичным образом при гетерогенном каталитическом окислении ацетальдегида на покрытой КС1 поверхности не требуется достин ения критической концентрации для течения самоускоряющейся реакции. [c.259]

    Мы не считаем, что имеющиеся данные подтверждают существование особого реакционного механизма, по которому происходит дальнейшее окисление высших альдегидов. Мы придерживаемся той точки зрения, что группа СНО является более предпочтительным местом атаки активных центров и что получающийся ири этом радикал 7 С0 способен разлагаться затем на I и СО. Таким образом могут образовываться такие радикалы, как СГЬ, СН3СН2, СН3СН2СН2 и т.д. Нрсдиолагается, что такие радикалы способны присоединять О,, разлагаясь затем на ОН и альдегид или на НдО и радикалы типа У СО (—>/ -)- СО), по уравнениям  [c.262]

    Академическое изучение частичного окисления имело своей целъю> создание удовлетворительных механизмов реакций горения углеводородов. fj wibuioe количество прикладных исследований в этой области, широко отраженных в патентной литературе, было направлено на использование дешевых и доступных парафиновых углеводородов в качестве источников альдегидов, кетонов, спиртов и кислот, являющихся основой промышленной химии алифатических соединений. [c.318]

    Для реакций оксосинтеза, в которых гидрокарбонил действует как протоновая кислота, а промежуточный ион карбония конденсируется с окисью углерода, можно написать более или менее условный карбоний-ионный механизм. Согласно этой схеме реакция осуществляется с потерей протона, чтобы мог образоваться кетен, который в присутствии гидрокарбонила гидрируется в альдегид, а затем и в соответствующий спирт  [c.301]

    Механизм образования альдегидов, включающий атаку гидрокарбонилом олефина, был исключительно верно предсказан в первой статье по оксосинтезу, появившейся в американской литературе [2J. Адкинс и Креск предположили, что реакция при обычных условиях протекает, по крайней мере, в четыре ступени  [c.302]

    Обрыв цепи в окисляюшемся углеводороде происходит обычно в результате реакции двух пероксидных радикалов. Механизм этой реакции для первичных и вторичных пероксидных радикалов один, а для третичных — другой. Вторичные радикалы реагируют с образованием спирта, кетона и кислорода [46] реакция, видимо, протекает через образование тетраоксида, который распадается на спирт, кетон (альдегид) и синглетный кислород (зафиксирован с помощью 9,10-дифенилантрацена [47]) ак сноо. —> Кзсноооосннз —Н2С=о + + КгСнон [c.31]

    Такой механизм находится в хорошем соответствии с наблюдаемой закономерностью окисления одноатомпых спиртов они легко окисляются в водной среде в кислоты, а в безводной — в альдегиды [И]. [c.51]

    В случае таких окислов, как, например, Си—О, окислительная стадия протекает медленно (нулевой порядок по олефину), в то время как для В1—Мо—О медленной является восстановительная стадия (нулевой порядок по кислороду). Промоторы (В1 для Мо—О, Мо для V—О) должны влиять главным образом на медленную стадию, например на способность окислов Мо—О или V—О восстанавливаться [92]. С точки зрения электронной теории промоторы должны изменять работу выхода электрона (ф) твердого тела, причем увеличение ф ускоряет восстановление, а уменьшение ф ускоряет окисление. Дальнейшие реакции алилльного радикала определяют селективность катализатора, но предполагаемые механизмы не были достаточно обоснованы. Так, например, образование альдегида и диена представляли по аналогии с гомогенным разложением гидроперекисей [16] соответственно следующим образом  [c.164]

    Эту реакцию нетрудно распространить на высшие олефины как правило, образуются кетоны, причем группа ОН в решающей стадии присоединяется к положительному концу двойной связи [113, 122]. Однако изменение реакционной среды может вызвать заметное повышение выхода альдегида из gHs в качестве главного продукта образуется ацетон, а пропионовый альдегид в количестве 20% получается при увеличении концентрации НС1 или при соответствующем выборе лигандов для Pd. Бутадиен сначала дает кротоновый альдегид, что указывает на 1,4-механизм, а затем ацетальдегид, который в присутствии сильной кислоты быстро конденсируется в триацетилбензол. В случае изобутена (и сходных олефинов) получаются только следы изомасляного альдегида, главным же продуктом является трет-бу-танол — результат простой гидратации, катализируемой кислотой. Вышеописанная схема показывает, что окончательная перегруппировка комплекса в этом случае невозможна  [c.170]

    Рассмотренные механизмы реакций характерны главным образом для некаталптического окисления в жидкой фазе ири умеренных температурах. При высокотемпературном окислении в газовой фазе fi e продукты образуются через пероксидные радикалы, минуя гндропероксиды, причем происходит значительная деструкция по углерод-углеродной связи с образованием спиртов и альдегидов  [c.359]

    Дивинил из ацетальдегида и этанола получается в присутствии окиси тантала, нанесенной на силикагель (2% ХэзОа), при 325—350 °С и атмосферном давлении. Согласно наиболее вероятному механизму образование дивинила протекает через промежуточную стадию получения кротонового альдегида  [c.364]

    В работе [38] подробно изучен механизм низкотемпературного разложения фитола монтмориллонитом. В смеси продуктов реакции идентифицирована целая гамма соединений, включающих фитеновый и пристеновый альдегиды, кетоны С13, g, изопреноидные кислоты, фитадиен, а также его димеры и тримеры. В образовании низко- [c.207]

    Следует также отметить, что Мейзенгеймор изучал механизм гриньярова синтеза почти исключительно иа неспособных к эно-лизации (бензойный, коричный, кротоновый альдегиды) и лишь вскользь на поддающихся ей карбонильных соединениях. При действии Mg-бромэтила па ацетон, даже после 3-часового кипячения в бензоле (по отгонке эфира), он не смог выделить изопропилового спирта. Между тем, как известно Сабатье и Мейль [5], даже в обычных температурных условиях, в среде эфира, [c.222]

    Механизм образования смол был изучен Дреиеро.м, Мор-ре.дом II Иглофом [42], которые прос.ледплп рост содержания по времени перекисей, альдегидов и кислот параллельно с ростом содержания смол. Оказалось, что перекиси могут быть открыты в начале хранения, когда еще нет ни альдегидов, ни кислот [c.331]

    Хи.мическим методам очистки нафталина посвящена обширная патентная литература [10]. В полупромышленном и промышлен-ном масштабах испытаны методы, ооновывающиеся либо на селективном расщеплении тиофенового кольца под действием хлорида алюминия [11], металлического натрия [12], алюмосиликатов [13], хлора и других окислителей [14], либо селективного сульфирования, алкилирования или конденсации тионафтена с альдегидами. Два последних процесса протекают по карбоний-ионному механизму при использовании серной кислоты и сульфокислот в качестве катализатора. [c.285]


Смотреть страницы где упоминается термин Механизм альдегидов: [c.160]    [c.228]    [c.273]    [c.275]    [c.260]    [c.48]    [c.198]    [c.222]    [c.334]    [c.382]    [c.119]    [c.191]    [c.310]    [c.274]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.907 ]




ПОИСК







© 2025 chem21.info Реклама на сайте