Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Холодное излучение

    Разряды, появляющиеся после разрыва контакта между заряженными поверхностями, определяются напряженностью поля и разностью потенциалов между поверхностями и обнаруживаются обычно по холодному излучению или газовому разряду. Холодное излучение возможно, если на поверхности возникают напряженности электрического поля больше 10 в см. В возникающем поле движение электронов ускоряется. При наличии газовой атмосферы давлением в несколько тор и при напряжении, превышающем напряжение искрового разряда, разности потенциалов могут выравниваться по- [c.441]


    Явление разделения электрических зарядов при механическом воздействии было известно еще в глубокой древности, а основанные на разделении зарядов статические генераторы в наши дни используются для ускорения ядерных частиц. Контактные разности потенциалов могут возникать при трении как разнородных, так и одинаковых твердых тел. В последнем случае соприкасающиеся поверхности обладают различной работой выхода электронов вследствие -образования адсорбционных пленок или влияния дефектов реальной структуры. Образование зарядов происходит путем перехода свободных электронов (у металлов и полупроводников) или в результате переходов слабо связанных ионов (у изоляторов). В любом случае возникает дипольный слой, который при отделении поверхностей разрывается так, что поверхности оказываются заряженными. Причиной возникновения зарядов в ряде случаев являются различия в подвижности разнородных дефектов под действием механического напряжения. Заряды, возникающие при трении частиц друг о друга, разряжаются, причем в ряде случаев разряд сопровождается холодным излучением (триболюминесценция) или химическими изменениями. Примером последних может служить спонтанный распад (взрыв) азида свинца при кристаллизации из раствора из-за накопления электрического заряда на поверхности [96]. [c.247]

    Теплопередача через какую-либо стенку от более нагретого теплоносителя к другому, более холодному теплоносителю, является относительно сложным явлением. Если взять, например, трубный пучок испарителя, который обогревается дымовыми газами, то налицо имеется три элементарных способа передачи тепла, которые рассматриваются в качестве основных. Тепло дымовых газов передается к трубкам пучка посредством теплопроводности, конвекции и излучения. Через стенки трубок тепло передается только посредством теплопроводности, а от внутренней поверхности трубки- к [c.19]

    Температура, при которой появляются холодные пламена, несколько понижается с ростом молекулярной массы углеводорода и возрастает при переходе от парафиновых углеводородов к олефинам и нафтенам. При окислении ароматических углеводородов образования холодных пламен не наблюдалось. Не наблюдалось их и при окислении метанола и формальдегида. Исследование спектра свечения холодных пламен привело к выводу, что излучение обусловлено флуоресценцией формальдегида [c.32]

    В поршневых двигателях сгорание топливо-воздушной смеси происходит при сравнительно высоких давлениях. В этих ус-лов 1ях наблюдается двухстадийное самовоспламенение топлив с предварительным образованием голубого пламени. Исследования интенсивности излучения холодных пламен и их индукционного периода позволили установить корреляцию между этими параметрам и антидетонационными свойствами топлива. Существование данной связи дает основания рассматривать холодное пламя в качестве активной стадии, ускоряющей появление горячего пламени. Однако механизм ускоряющего действия холодного пламени должен отличаться от механизма цепного окисления смесей. [c.133]


    При некоторых реакциях наблюдается выделение или поглощение лучистой энергии. Обычно в тех случаях, когда при реакции выделяется свет, внутренняя энергия превращается в излучение не непосредственно, а через теплоту. Например, появление света при горении угля является следствием того, что за счет выделяющейся при реакции теплоты уголь раскаляется и начинает светиться. Но известны процессы, в ходе которых внутренняя энергия превращается в лучистую непосредственно. Эти процессы носят название холодного свечения или люминесценции. Большое значение имеют процессы взаимного превращения внутренней и электрической энергии (см. 98). При реакциях, протекающих со взрывом, внутренняя энергия превращается в механическую — частью непосредственно, частью переходя сперва в теплоту. [c.166]

    Окраска предметов определяется частотой отражаемого света. Если отражаются фотоны со всеми частотами видимого света, объект кажется белым, а если все фотоны с частотами видимого света поглощаются (не отражаясь), то объект выглядит черным. Так как светлая поверхность отражает больше излучения, чем темная, она остается более холодной. [c.400]

    Обычно воздух над земной поверхностью нагревается излучением Солнца и излучением, образуемым земной поверхностью. Этот более теплый и потому менее плотный воздух поднимается вверх, унося с собой загрязнители. Холодный же и более чистый воздух опускается. При инверсии температуры холодный воздух оказывается пойманным под слоем теплого - часто над городом или долиной. При этом загрязнители не рассеиваются и их концентрация может достигнуть опасного уровня. Лос-Анджелес оказывается под смогом главным образом из-за своего расположения. [c.418]

    В основу теории неизотермических струй положено условие постоянства количества движения для всех сечений струи и условие постоянства избыточного теплосодержания. Последнее означает, что теория неизотермических струй разработана ири условии отсутствия теплообмена излучением струи с окружающей средой. Границы горячей струи прямолинейны, не зависят от температуры струи и совпадают с границами холодной струи, т. е. для неизотермических круглых струй сохраняется зависимость — 3,4ал и а = 0,07. [c.72]

    Если поверхность принимает излучение от источника с более высокой температурой, доля воспринимаемой энергии зависит от поглощательной способности более холодной поверхности и излучательной способности источника. Если источником является абсолютно черное тело, а облучаемая поверхность находится при постоянной температуре, то можно задать кажущуюся поглощательную способность поверхности для разных значений температуры излучения (рис. 6). [c.195]

    Лучистый теплообмен между двумя поверхностями зависит от излучательной способности теплой стенки и поглощательной способности холодной стенки относительно излучения теплой. Для серых поверхностей обе величины характеризуются степенью черноты соответствующей стенки. Для двух параллельных плоскостей или [c.107]

    Если излучение от таких ламп падает на поверхность материала, над которой протекает газ с невысокой температурой, то поглощение энергии излучения будет происходить тут же у поверхности материала. В случае невысокой теплопроводности такого материала тонкий слой у его поверхности будет подвергаться быстрому нагреванию, в то время как внутри (если продолжительность облучения невелика) материал будет оставаться холодным. Этот метод особенно важен для сушки окрашенных и лакирован-ных поверхностей применяется-он также и для сушки других защитных покрытий. [c.312]

    Используя уравнение (55), пренебрегая собственным излучением холодного ограждения рефлекторных печей и обозначая через рк коэффициент отражения поверхности ограждения, получим следующее выражение  [c.78]

    В колодцах с отоплением из центра подины слитки располагаются по периферии рабочего пространства колодца, в результате чего облучение слитков со стороны футеровки заниженное, напротив, поверхность слитков, обращенная внутрь колодцев, получая мало излучения от стен, облучается мощным лучистым потоком от столба пламени в центре колодца. При наличии интенсивной циркуляции газов в колодЦе создается более или менее равномерное поле температур в пламени и обеспечивается относительно равномерный нагрев слитков. Подобные колодцы менее чувствительны к холодному посаду и позволяют осуществлять нагрев крупных слитков. [c.81]

    В конце кислородной зоны вследствие того, что процесс приближается к адиабатному, температура близка к теоретической температуре горения. Под влиянием высокой температуры зола большинства топлив расплавляется. Углеродная поверхность не смачивается жидким шлаком, поэтому капли шлака образуют на ней небольшие шарики (см. рис. 7-12). Образуя более крупные капли, шлак стекает вниз навстречу потоку продуктов сгорания и воздуха и попадает в область все более низких температур. Интенсивный теплообмен с встречным сравнительно холодным потоком приводит к застыванию и грануляции шлака в нижних участках слоя. Постепенно шлак накапливается на поверхности колосникового полотна, образуя так называемую шлаковую подушку. В этой, самой нижней зоне происходит выгорание остатков углерода, поэтому ее часто называют зоной выжига шлака. Слой шлака защищает колосниковое полотно от действия теплового излучения со стороны горящих углеродных частиц, что одновременно с охлаждающим действием дутьевого воздуха обеспечивает надежную работу колосникового полотна. [c.227]


    Переходя в более низкое энергетическое состояние, возбужденные частицы испускают квант света - люминесцируют. От излучения нагретых тел люминесценция отличается неравновесно-стью, так как не включает практически тепловую энергию. Это избыточное над тепловым излучение часто называют холодным светом. Из различных типов люминесценции наибольшее значение для аналитической химии имеет флуоресценция - свечение, затухающее сразу после прекращения возбуждения. [c.213]

    ЭМА-преобразователи в настоящее время получили наибольшее распространение в качестве средства бесконтактного излучения и приема ультразвуковых волн. Это объясняется их относительно большим коэффициентом преобразования по сравнению с другими способами бесконтактного возбуждения акустических волн (на частотах, обычно применяемых в ультразвуковой дефектоскопии), их широкополосностью, возможностью возбуждать волны самого различного типа, слабой зависимостью преобразования от неровностей поверхности (проверку можно вести даже при наличии окалины или краски), применимостью ЭМА-преобразователей для контроля не только холодных, но и горячих изделий. Недостатками следует считать громоздкость преобразователей из-за необходимости сильного подмагничивания и малый коэффициент преобразования по сравнению с ПЭП. [c.70]

    Явление разделения электрических зарядов при механическом "йоздействии известно с глубокой древности. Статические генераторы, основанные на разделении зарядов, используются для ускорения элементарных частиц. Контактные разности потенциалов могут возникать при трении как разнородных, так и одинаковых твердых тел. Образование зарядов происходит путем перехода свободных электронов (металлы, полупроводники) -или слабо связанных ионов (диэлектрики). В любом случае возникает ди-польный слой, который при разделении поверхностей разрывается так, что поверхности оказываются заряженными. Их разряд сопровождается холодным излучением (трнболюминесценция) или химическими изменениями. Примером может служить спонтанный распад (взрыв) азида свинца (РЬЫз) при кристаллизации из раствора из-за накопления электрического заряда на поверхности. [c.111]

    Термин люминесценция применяется для обозначения явления испускания электромапнитного излучения веществами, возбужденными в результате поглощения энергии. При испускании излучения люминесценции вещество возвращается в свое основное электронное состояние. Излучение, испускаемое веществом при температурах выше примерно 500 °С, является тепловым излучением, которое подчиняется законам Кирх гофа для излучения абсолютно черного тела. Люминесценция в дополнение к тепловому излучению представляет собой излучение в данном спектральном интервале при данной температуре. Обычно термин люминесценция относят к излучению в видимой области ( холодное излучение ), испускаемому при температурах ниже 500 °i . Люм инесци-рующие вещества называют люминофорами для твердых веществ пользуются также терминами кристаллофосфор или фосфор . Люминесценция может продолжаться еще йекоторое время лосле окончания возбуждения (в отличие от обычного явления рассеяния света или эффекта комбинационного рассеяния света). [c.91]

    Излучение электронов (экзоэмпссия по Крамеру) также появляется как результат механической обработки, у многочисленных металлов и неметаллов. При этом во время механического воздействия может происходить спонтанное излучение электронов с высокой энергией (электроны Дерягина—Кротовой с энергиями порядка нескольких кэв). Интенсивность такого излучения, например у щелочных галогенидов, зависит от твердости. Объяснить это можно зарядкой поверхностей разрущения и механизмом холодного излучения. После проведения механического активирования процессы химической адсорбции или химического взаимодействия (процессы окисления) поверхности кристалла с окружающей газовой атмосферой могут привести к эмиссии электронов малых энергий (электроны Крамера с энергиями порядка 1 эв). Измерения контактных потенциалов приводят к заключению, что эмиссия возникает вследствие понижения работы выхода электронов. Работа выхода электронов с нарастанием окисного слоя проходит через минимум, который достигается при моно-атомном покрытии поверхности. [c.442]

    Ценными сЕюйствами обладает кварц. Изделия из кварцевого стекла выдерживают нагревание до 1200 С и пропускают ультрафиолетовое излучение. Благодаря ничтожно малому коэффициенту термического расширения кварца изделия не растрескиваются даже если их нагреть до красного каления и затем опустить в холодную воду. Кварцевая аппаратура теперь обычна в лабораториях и на производстве. Сверхчистый кварц применяют для изготовления волоконной оптики и устройств для глубокой очистки веществ. [c.377]

    Наверху радиационно секции размещен излучающий конус, который, с одной стороны, нагреваясь до высокой температуры, увеличивает количество тепла, передаваемого излучением в верхнюю половину радиационной секции, а с другох стороны, — увеличивает скорость потока продуктов сгорания (который с падениенг их температуры уменьшается) и, наконец, но некоторым литературным источникам, направляет часть более холодных продуктов сгорания в пространство между трубами и стено11. Затем продукты сгорания через это пространство опускаются вниз, повышая теило, переданное 1 поверхности труб, за счет конвекции и, смешиваясь с раскаленными продуктами сгорания у горелок, снижают их температуру. У печей малых диаметров горелка помещается в коническом топочном пространстве, образованном футеровкой, благодаря чему не происходит излишнего охлаждения пламени и оно не затухает. [c.19]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Здесь, вероятно, будет уместным следующее общее замечание, касающееся различи ,1х видов переноса теплоты, таких, например, как конвекция и излучите. Нуссельт отмечал в 1915 г. (2 , что в литературе часто можно найти утверждение, что передача теплоты от твердого тела к окружающей среде осуществляется в общем случае тремя различными способами излучением, теплопроводностью и конвекцией. Говорят, что подъемные силы пли силы, определяющие вынуждепиое течение воздуха, приводят к соприкосновению холодных воздушных вихрей с поверхностью нагретого тела, в результате чего теплота уносится от поверхности. Различая теплоперенос теплопровод- [c.70]

    С. Пропускание пограничного слоя. В 2.9.7 рассмат-)ивается радиационный перенос в неизотермическом газе. Тлотность потока падающего излучения на холодной стенке, обращенной к горячему газу, меньше в том случае, когда имеется холодный пограничный слой, вследствие того, что не весь путь падающего луча проходит через области с высокой температурой. Проводя анализ термически развивающегося течения поглощающего и излучающего молекулярного газа на входе в канал, образо- [c.496]

    Такое решение, очевидно, применимо для расчета радиатора космического корабля при внезапном включении или отключении подводимой энергии, для горячей отливки при быстром экранировании излучения или холодного предмета, который быстро помещают в горячую излучающую печь. По уравнению (21) рассчитаем Т , (5 и Тс и, зная необходимое точное или предполагаемое значение Т, из (21 в) )1айдем Т, затем 1 из (23) и, наконец, 1 из уравнения (21 г). [c.513]

    За последние годы была установлена возможность достаточно интенсивного излучения при сгорании некоторых горючих систем, однако закономерности этого явления еще не во всем ясны. Поэтому мы будем считать излучение пламени незначительным и принимать, что при отсутствии непосредственного соприкосновения горячего газа с более холодной внешней средой сгорание является адиабатическим. Далее мы рассмотрим, в каком случае излучение продуктов сгорания имеет наиболее важное для задач техники взрывобезопасности значение. Оказывается, что тепловые потери излучением необходимо прежде всего учитывать при установлении механизма концентрационных пределов взрываемости, а в ряде случаев — для гетерогенных сажеобразующих систем. [c.16]

    Когда подвергающиеся очистке газы находятся в какой-либо емкости или проходят по газоходу, темшература стен которого отличается от температуры газа, то метод измерения температуры должен учитывать эффект теплового излучения, присущий системе. Так, если газы холоднее окружающей их стены, то стены будут излучать тепло в направлении теплоизмерительного элемента, и зарегистрированная температура будет выще фактической температуры газа. И наоборот, для газов, более горячих, чем газоход термоиэмерительный элемент будет излучать тепло в направлении окружающих стен и таким образом не достигнет реальной температуры газа. Перенос тепла излучением приводит к большой разнице температур и очень быстро растет при увеличении температуры так, при температуре порядка 1500 °С разница достигает 200— 300 °С. В емкости или газопроводе с теплоизоляцией, где темпе- [c.62]

    Использование тепла при разведении и выращивании свиней стало общепринятым в районах с умеренным и холодным климатом. Для иагуливания мяса и сала в помещении должна поддерживаться определенная температура. При повышении ее уменьшается усвоение кормов, а при понижении — увеличивается их расход, что связано с необходимостью поддержания необходимой температуры тела животных. Оптимальные условия комфорта, стимулирующие рост и развитие свиноматок и молодняка, можно обеспечить за счет применения локального обогрева излучающими горелками. В США проводился эксперимент (табл. б б) по изучению влияния на развитие поросят локального обогрева с помощью двух нагревателей, работающих на СНГ, в свинарнике на 120 голов. В качестве источника тепла была использована печь каталитического типа, которая оказалась наиболее подходящей с точки зрения безопасности для обогрева пола путем излучения. [c.348]

    Под действием гравитационного ноля рас-калеиные газы, двигающиеся в печах и (имеющие меньший удельный вес по сравнению с более холодными газами, стремятся занять наиболее высокое положение, т. е. располагаться ближе к поверхности футеровки. Сосредоточение наиболее горячих газов вблизи футеровки означает возникновение эксцентриситета в излучении газов (пламени) в сторону ее поверхности. [c.59]

    Например, применение керамических горелок (горелок инфракрасного излучения), в которых сжигание высококалорийного топлива высокой степени очистки осуществляется внутри пористой керамики или в тончайшем газовом слое вблизи поверхности керамики. Целые панели из таких горелок могут заменять собой футеровку, являясь мощным излучателем, обеспечивающим интенсивную теплоотдачу на поверхность нагрева. Собственное излучение тонкого слоя газов в сторону поверхности нагрева незначительно. В данном случае, мы имеем дело с типичным предельным случаем косвенного направленного теплообмена, при котором весь теплообмен обеспечивается излучением кладки. В таких печах отвод газов осуществляется вблизи поверхности нагрева, т. е. в самой холодной части печи, что и обеспечивает высокое значение коэффициента исп.ользования топлива. Применение обычных беспламенных горелок с- керамическим туннелем и направлением продуктов сгорания тонким слоем на футеровку печи также позволяет организовать теплообмен, приближающийся к предельному случаю косвенного направленного теплообмена. В рассмотренных случаях, очевидно, преимущества имеют те виды топлива, которые не склонны в процессе сжигания к сажеобразованию, т. е. топлива, не содержащие в том или ином виде тяжелых углеводородов. [c.76]

    Применение вакуума возможно только при использовании кессонного охлаждения, так как требуется абсолютная тазоплотность ограждения. В данных случаях не может быть использовано понятие температуры в термодинамическом смысле, и поэтому нельзя говорить о разности температур между внутрипечным пространством и внутренней поверхностью ограждения. Тепло генерируется на внутренней поверхности ограждения за счет облучения ее плазмой (тормозное и рекомбинационное излучения), а также за счет кинетической энергии электронов и ионов, попадающих на внутреннюю поверхность ограждения вследствие эффекта рассеивания заряженных частиц и вторичной эмиссии электронов с анода. Сюда следует, однако, добавить непосредственное излучение раскаленного анода, а также поверхности расплава. Все вместе взятое создает приток тепла на внутреннюю поверхность ограждения, требующий отвода его за счет охлаждения водой. Унос тепла с водой охлаждения может быть существенным и в энергетическом балансе достигает 20—40%-Таким образом, ограждение вакуумно-дуговых и электроннолучевых печей энергетически несовершенно, однако этот недостаток перекрывается многими другими достоинствами печей данного типа, оправдывающими с технико-экономической точки зрения применение холодного ограждения. [c.243]

    Уникальные электронные свойства углеродных нанотруб делают их одним из перспективных материалов для построения различных электронных приборов. Полевая эмиссия углеродных нанотруб возникает при чрезвычайно низких напряженностях электрического поля и позволяет получать высокие значения плотности эмиссионного тока. Материалы на основе углеродных нанотруб могут найти применение в качестве холодных катодов для плоских дисплеев, источников высокоэнергетических электронов и рентгеновского излучения. Замечательные эмиссионные свойства этих материалов объясняются, прежде всего, резким увеличением напряженности прикладываемого электрического поля вследствие малой толщины нанотрубок, расположенных нормально к поверхности образца. [c.84]

    Еще задолго до рассматриваемого пери)да (конца 20-х—начала 30-х годов) имелись наблюдения о том, что медленное окисление углеводородов, эфиров, жирных кислот и некоторых других соединений сопровождается излучением света либо в виде слабого свечения всей реагирующей смеси (люминесценция), либо в виде холодного пламени, распространяющегося по смеси с небольшой скоростью [51—56]. В 1929 г. возникновение холодных пламен констатировал Эдгар в известной работе с Поупом и Дикстра по окислению октанов (см. стр. 34). [c.78]

    Авторы сделали попытку снять спектр холодного пламени этилбензола. Спектрограмма оказалась не внолне отчетливой. Можно было лишь установить, что излучение происходит в области длин волн, которые отвечают флуоресценции формальдегида. Микрофотограмма показала, что качественно структура спектра холодного пламенп этилеибензола совпадает со структурой спектра флуоресценции форма.пьдегида. На этом основании авторы приходят к выводу, что холоднонламенное свечение у ароматических углеводородов, так же как и у алифатических, связано с формаль- [c.435]

    Охлаждение, пересыщение и конденсация паров может также происходить При их соприкосновен1 и с холодной поверхностью или при смешении с холодным воздухом. Так образуются в природе туманы. Чаще всего туман появляется при ясной погоде ночью, при сильном охлаждении поверхности земли в результате теплового излучения. Влажный воздух вторгается в зону с более низкой температурой или соприкасается с охладившейся землей, вследствие чего в нем и образуются капельки тумана. [c.356]

    Лучистый теплообмен между двумя абсолютно черными телами jj = (T(rj —rt)5i2, где —взаимная поверхность излучения тел, i2 —энергия, которая 1ередается от нагретого тела к холодному в единицу времени. [c.262]


Смотреть страницы где упоминается термин Холодное излучение: [c.121]    [c.169]    [c.14]    [c.56]    [c.510]    [c.311]    [c.91]    [c.377]   
Органические реагенты в неорганическом анализе (1979) -- [ c.91 ]




ПОИСК







© 2025 chem21.info Реклама на сайте