Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вирусы, роль образовании

    В общем исследования с мечеными атомами дали нам следующее представление о том, как воспроизводятся вирусы бактерий. Благодаря особому свойству белковой оболочки вирус может прикрепляться к поверхности бактериальной клетки. При соприкосновении с ней он немедленно выпускает в клетку свою ДНК. Пустая белковая оболочка остается снаружи клетки и в дальнейшем не играет никакой роли. Внутри клетки вирусная ДНК начинает воспроизводить (копировать) самое себя, используя в качестве сырья нуклеиновые кислоты бактериальной клетки и вещества, которые бактерия поглощает из окружающей ее среды. Примерно 40% ДНК исходного вируса сохраняется и переходит к потомкам. Вирусная ДНК вызывает также образование нового белка в клетке. В конечном счете белковые частицы соединяются с копиями ДНК и образуют 200 точных копий исходного вируса. [c.146]


    Разнообразные реакции Т-клеток в совокупности называют иммунным ответом клеточного типа. Как и образование антител, эти реакции играют у позвоночных важную роль в защите от инфекции, особенно от некоторых вирусов и грибов. Так же как и ответы, связанные с выработкой антител, они высокоспецифичны в отношении антигена [c.260]

    Бактерии, вирусы, фаги, субклеточные образования вплоть до химически индивидуальных препаратов обоих важнейших классов биополимеров, белков и нуклеиновых кислот были главными объектами исследования во всю предшествующую пору молекулярной биологии. Использование их в качестве объектов для эксперимента сыграло решающую роль в развитии нашей науки, способствовало ее становлению — выработке ее методологии, техники эксперимента и т. д. Это и само по себе привело к немалым успехам в познании живой материи. Но позже закономерности, обнаруженные при изучении предельно простых объектов, оказалось возможным распространить и на весь мир живых существ. [c.159]

    Кавитацию используют также для удаления вирусов из ткани, пораженной инфекцией. Установлено, что при низкой интенсивности кавитации рост организмов стимулируется, затем с увеличением интенсивности наступает некоторый -Предел роста, и, наконец, он прекращается совсем. Скорость гибели организмов возрастает с увеличением времени воздействия и температуры. Предполагается, что разрушение бактерий обусловлено как действием кавитации внутри бактерий, так и образованием перекиси водорода в воде. Несомненно, определенную роль в разрушении вирусов играет выделение газа из раствора, а также изменение давления. [c.70]

    Говоря о нековалентных взаимодействиях, прежде всего нужно отметать ту большую роль, которую они играют в образовании макроскопического вещества из молекул, атомов и ионов. Именно в результате нековалентных взаимодействий скопления атомов или молекул могут существовать в конденсированном состоянии, в виде жидкостей или твердых тел. Важную роль играют эти взаимодействия в случае полимеров. В частности, за счет нековалентных взаимодействий различные комплексы белков объединяются либо друг с другом, либо с нуклеиновыми кислотами при формировании рибосом, хроматина, вирусов, либо липидами при образовании липопротеидных мембран. Таким образом, нековалентные взаимодействия лежат в основе образования важнейших биологических структур, и роль их для биологии особенно велика. [c.101]

    При другом способе терминальной инициации роль затравкн выполняет белок, точнее — ковалентное соединение белка с нуклеотидом. Такое соединение возникает в результате образования фосфодиэфирной связи между 5 -гидроксилом дезоксирибонуклео-тида (например, ёСМР) и гидроксилом оксиамииокислоты (например, серина) специального, так называемого терминального белка. В изученных вирусных системах терминальный белок — это всегда вирус-специфический (т. е. закодированный в вирусном геноме) полипептид, и фермент, осуществляющий присоединение нуклеотида, также всегда имеет вирус-специфическую природу. Нуклео-тид-белковый комплекс взаимодействует с З -концом одноцепочечной вирусной ДНК-матрицы при этом нуклеотид, входящий в комплекс с терминальным белком, комплементарен З -концевому нуклеотиду матрицы и служит затравкой, к которой присоединяются последующие нуклеотиды (рис. 136). Ясно, что к 5 -концу синтезированной таким образом цепи ДНК будет ковалентно присоединен белок. Рассмотренный способ инициации цепи ДНК реализуется, например, у аденовирусов и у фага ф29, у которых однонитевые ДНК-матрицы образуются в процессе репликации двунитевого гено-.ма (с.м. с. 267). [c.264]


    Необычной особенностью репликации ДНК фага Ми является то, что, во-первых, все вновь синтезированные копии фагового генома оказываются в состоянии профага (т. е. включены в клеточную хромосому) и, во-вторых, фагоспецифическая последовательность нуклеотидов, которая послужила матрицей для образования дочерних геномов, остается в клеточной хромосоме на том же месте, где она находилась до репликации. Другими словами, репликация идет без выщепления резидентного профага и, по существу, представляет собой репликативную транспозицию. Вероятная схема этого процесса представлена на рис. 152. Фагоспецифические белки обеспечивают сближение концов профага, интегрированного в клеточную хромосому (аналогично тому, как они это делают с проникшей в клетку молекулой ДНК фага). Участок хромосомы, в котором сближены концы прсфага, контактирует с другим участком этой же хромосомы или с какой-либо другой находящейся в клетке молекулой ДНК. В этом свежем участке появляется ступенчатый разрыв (два однонитевых разрыва на расстоянии 5 п. н.) возникают однонитевые разрывы и по обеим границам резидентного профага. Выступающие 5 -концы клеточной ДНК соединяются с З -концами вирус-специфических последовательностей, а З -концы клеточной ДНК выполняют роль затравки. Таким образом, инициация раунда репликации представляет собой в этом случае вариант рекомбинационной инициации- В результате Полуконсервативной репликации и последующих процессов репарации в клеточной хромосоме оказывается две копии профага в каждой из них одна чз цепей пронсходнт из резидентного профага, а вторая синтезирована заново. При повторении этого процесса Количество профагов в клеточной хромосоме может достигать сотни. [c.287]

    На первых порах (-Ь)нити выполняют роль мРНК они направляют образование вирус-специфических белков. После накопления достаточного количества этих белков начинается формирование субвирусных частиц. При этом в одну субвирусную частицу, содержащую некоторые из вирус-специфических белков, включается полный набор, т. е. 10 разных видов, молекул (+)РНК. Механизм такого избирательного и организованного белок-нуклеинового взаимодействия пока не понятен. Вирус-специфическая РНК-полимераза является интегральным компонентом субвирусных частиц и осуществляет синтез двухнитевых РНК-геномов, используя в качестве матрицы находящиеся в этих же частицах (-Ь)нити РНК. После того как РНК субвирусной частицы переходит в двухнитевую форму, может опять начаться синтез однонитевых (+)РНК. Но если к этому времени в клетке накопилось достаточно много белков, необходимых для построения наружной оболочки вируса, то формируются зрелые вирионы, в которых дальнейший синтез РНК блокируется. [c.329]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    Внимание многих биохимиков в настоящее время сосредоточено на вопросе о том, камим образом поверхности клеток взаимодействуют с другими биологическими объектам и. На поверхности мембран, например, содержатся группировки, играющие роль антигенов. Антигены — это специфические химические структуры, которые вызывают образование антител, способных специфически связываться с ними. На поверхности эритроцита уже обнаружено около 250 различных антигенных группировок (детерминант). Эти детерминанты определяют группу крови, а аналогичные детерминанты, содержащиеся на поверхностях других клеток, определяют, будет ли отторгнута трансплантированная ткань. Различные бел ки из растений и из других источников действуют как агглютинины, связываясь, подобно антителам, с поверхностными группировками. Вирусы, атакующие клетки, адсорбируются на специфических поверхностных рецепторах, которые могут быть идентичны определенным антигенным детерминантам. Особенно интересно выяснить, каким образом одни клетки решают , что другие клетки являются чужеродными . Повышенный интерес к этой проблеме обусловлен тем, что ее решение может открыть путь к предотвращению реакций отторжения тканей и к лечению серьезных аутоиммунных заболеваний (гл. 16, разд. В.7). [c.372]


    Специфический протеолиз — удобный процесс для образования сложных белковых структур. Во многих случаях белки модифицируются путем расщепления одной или нескольких пептидных связей. Для обозначения этого типа катализируемых ферментами реакций, которые играют доминирующую роль во многих физиологических процессах [137—139], используются термины ограниченный протеолиз или специфический протеолиз (табл. 4.2). Хорошо известными примерами специфического расщепления полипептидов являются активация предшественников пищеварительных ферментов, морфогенетические процессы в бактериальных вирусах и каскадные процессы коагуляции и комплементного действия крови [138, 140]. Недавно было показано, что механизмы посттрансля-ционного расщепления имеют место также при образовании таких разных белков, как инсулин, коллаген и специфичные белки вирусов. Кроме того, высокоспецифичное протеолитическое расщепление ферментов важно при инактивации и активации специфических внутриклеточных ферментов (табл. 4.2). [c.72]

    В настоящее время исключительно быстрыми темпами развивается изучение структур макромолекул фибриллярных и глобулярных белков, синтетических волокон, каучука, кристаллических вирусов, витаминов и т. д. Важную роль при этом играют методы дифракции рентгеновских лучей. Способность к образованию соединений включения многих из этих соединений только предполагается, и поэтому еще преждевременно обсуждать их подробно. По некоторым соединениям имеется значительное количество сведений, однако окончательное представление о их структуре в большинстве случаев отсутствует. Наличие таких внутримолекулярных изгибов, как в иолипептид-ных цепях, таких скрученных в а-спираль структур, как в а-кератинах, а также разнообразные формы гемоглобина, в которых обнаружены кристаллы чередующихся слоев белка и кристаллизационной жидкости, — все указывает на возможность образования соединений включения. [c.36]

    Разнообразные реакции Т-клеток в совокупности называют иммунным ответом клеточного типа. Как и образование антител, эти реакции играют у позвоночных важную роль в защите от нифекцин, особенно пря заражении определенными вирусами и грибами. Так же как и ответы, связанные с выработкой антител, они высокоспецифнчны в отношении антигена. О Т-клетках н их реакциях известно значительно меньше, чем о В-клетках,-главным образом потому, что рецепторы н продукты Т-клеток пока еще плохо охарактеризованы по сравнению с антителами. [c.51]

    У фага MS2 молекулярный вес частиц составляет 3,6-10 содерллание РНК — 31 % РНК находится в нем в виде компактной структуры с большим количеством водородных связей эта РНК инфекционна для бактериальных протопластов. РНК-содержащие фаги представляют значительный интерес для изучения репликации РНК в связи с образованием двухцепочечных молекул РНК (стр. 59) [136—139, 144]. Возможно, что при внедрении РНК-содержащего вируса в клетку РНК играет роль матрицы (стр. 271) для синтеза РНК-зависимой РНК-полимеразы (стр. 246) и белка вирусной оболочки. Образовавшаяся в результате полимераза синтезирует затем комплементарную цепь РНК, приводя к образованию двухцепочечной репликативной РНК. На этой синтезированной полимеразой комплементарной цепи двухцепочечной формы по,лимераза образует новые цепи вирусной РНК. К этому процессу мы еще вернемся в гл. XII (стр. 249). [c.161]

    Каталазы и пероксидазы широко распространены в животных, растительных и аэробных микроорганизмах. По крайней мере один из вирусов также содержит пероксидазу. Каталаза составляет около 1% сухого веса бактерий Мкгососсиз 1у8ойе1Шиз. Точная физиологическая роль этих ферментов не установлена. Они, несомненно, служат для удаления перекиси водорода, однако, вероятно, играют и какую-то другую, дополнительную роль. Пероксидазы, например, особенно широко распространены в организмах высших растений, и было установлено их участие во многих процессах, включая регуляцию роста растений (см. работу [147] и приведенные в ней ссылки). Некоторые пероксидазы катализируют образование связи углерод — галоген по схеме [c.196]

    Практическое значение аэрозолей чрезвычайно велико. Общеизвестно значение облаков для формирования климата в метеорологии, биологическая роль переноса ветром семян и пыльцы растений, спор бактерий и плесеней широко применяются в технике сжигание распыленного топлива и распылительная сушка, в сельском хозяйстве — распыление удобрений, средств борьбы с вредителями растений, тепловая защита садов дымами и др. С другой стороны, образование туманов является значительной помехой для авиации и других видов транспорта большую опасность представляют радиоактивные аэрозоли, возникающие при взрыве атомных бомб в промышленности тысячи тонн ценных руд и различных химических веществ выносятся дымами в атмосферу и борьбасэтим явлением имеет большое санитарно-гигиеническое значение. Для народного здравоохранения актуальное значение имеют различные патогенные аэрозоли, так как этим путем передаются многие инфекции (при одном чихании в воздух вводится до 100 тыс. бактерий, частиц вируса гриппа и др.) или вызываются профессиональные заболевания (силикоз и др.). [c.148]

    После расщепления дисульфидных связей белок либо распадается на составляющие его цепи (подобно инсулину), либо разворачивается, образуя одну длинную цепь (подобно рибонуклеазе). Как известно, не все белки содержат цистин однако имеются и другие возможности сшивки цепей, например при помощи фосфо-эфирных связей. Кроме того, следует иметь в виду, что трехмерная структура белка, несомненно, приводит к взаимодействию боковых цепей аминокислот друг с другом или с какими-либо участками пептидной цепи. Важную роль в образовании уникальной структуры белка, обеспечивающей его биологическую функцию, играют прочно связанные с ним вещества небелковой природы, такие, как металлы, пигменты и сахара. Молекула гемоглобина человека состоит из четырех пептидных цепей (двух а- и двух -цепей), соединенных с четырьмя геминовыми группами, которые и являются переносчиками кислорода. Структуры обеих цепей гемоглобина (по Брауницеру и др. 1 ]) и миоглобина [2, 3] приведены на фиг. 50. Интересно, что, согласно недавно опубликованной структуре субъединицы белка вируса табачной мозаики [4], в цепи из 158 аминокислотных остатков отсутствуют поперечные связи (фиг. 51). [c.113]

    Трудно недооценить возможную роль в процессах токсино-образования вирусов. Но вопрос этот пока все-таки еще настолько неясен, что носит сугубо гипотетический характер. [c.237]

    Другой тип мутантов, сыгравших большую роль в развитии генетики фагов, был открыт Лурия, который еще в период зарождения генетики бактерий как науки изучал мутации Е. соН Топ - Ton т. е. от чувствительности к устойчивости по отношению к фагу Т1 (гл. VI). Аналогичные спонтанные мутации приводят к тому, что из чувствительных к фагу Т2 клеток Е. соН (Tto ) дикого типа образуются мутанты Tio ". Устойчивость этих бактериальных мутантов обусловлена структурной модификацией их клеточной оболочки, в результате которой не происходит стерео-специфической фиксации органов адсорбции отростка фага Т2 на соответствующих рецепторах клетки. В результате фаг уже не может присоединиться к клетке, и, следовательно, ДНК фага не может быть инъецирована внутрь клетки хозяина. Почему же тогда, несмотря на то что бактерии могут мутировать в устойчивую к фагу форму, в природе до сих пор существуют чувствительные к бактериофагу штаммы Почему в результате естественного отбора чувствительные формы не заменились устойчивыми Почему бактериальные вирусы до сих пор не лишились всех подходящих хозяев и не вымерли в результате этого Ответить на эти вопросы, как и на многие другие вопросы, касающиеся проблем эволюции, не так просто, однако одной из причин сохранения в природе бактериальных штаммов, чувствительных к фагу, могут быть открытые Лурия в 1945 г. мутанты с измененным спектром литического действия. Такие мутантные фаги с измененным спектром литического действия способны преодолеть устойчивость нечувствительных к фагу мутантов бактерий благодаря небольшим изменениям структуры органа адсорбции (по сравнению с фагом дикого типа). Эти структурные изменения позволяют мутантным органам адсорбции осуществлять стереоспецифическую реакцию с рецепторами мутантной фагоустойчивой бактерии, несмотря на модификацию клеточной оболочки, препятствующей присоединению фага дикого типа. Однако появление мутантов с измененным спектром литического действия ни в коей мере не может положить конец борьбе за существование, так как бактериальный штамм, устойчивый к фагу дикого типа и чувствительный к мутантному фагу с измененным спектром литического действия, может образовывать сверхустойчивый бактериальный мутант, устойчивый к обоим фагам. На появление сверхустойчивого бактериального штамма фаг, чтобы не оказаться побежденным, может ответить образованием мутанта со сверхизмененным спектром литического действия. Таким образом, сосуществование в природе бактерий и бактериальных вирусов поддерживается за счет тонкого мутационного равновесия, спасающего обоих антагонистов от полного вымирания. [c.280]

    Совсем по-иному складываются отношения между дефектным вирусом, например вирусом саркомы Рауса, и вирусом-помощником. В этом случае неспособность вируса кодировать синтез какого-либо (функционального) белка компенсируется образованием этого белка вирусом-помощником (см. гл. ХИ, разд. В) [396]. Также отличается по своему характеру роль вируса-помощника в процессе инфицирования клеток Е. oli с помощью ДНК фага "К. В обоих этих случаях нуклеиновая кислота сохраняет способность синтезировать свою репликазу в отличие от нуклеиновой кислоты вируса-сателлита вируса некроза табака. [c.169]

    Вопрос о биологической роли и происхождении этих лишенных нуклеиновой кислоты частиц остается невыясненным. Было выска.зано три предположения 1) избыточный белок агрегирует с образованием частиц, не имеющих никакого назначения 2) белковые частицы играют роль предшественников при образовании вирусных частиц 3) вирусные частицы могут утратить свою РНК. Второе предположение в некоторой степени подтверждается наблюдением, что в инфицированных клетках соединению пустых головок с ДНК и отростками предшествует накапливание головок фагов [568]. Кроме того, было показано, что верхний компонент вируса полиомиелита играет роль предшественника капсида. Процесс созревания, в результате которого пустая частица превращается в частицу, наполненную РНК, сопровождается в этом случае расщеплением более крупной молекулы белка, характерной для верхнего компонента, на два компонента, типичных для вирусов полиомиелита VP2 и VP4 [241, 242, 307]. [c.188]

    Взаимодействие клеточных мембран. В обычных физиологических условиях слияние клеточных мембран является важным биологическим процессом, лежащим в основе таких явлений как экзоцитоз гормонов, ферментов, нейротрансмедиаторов, а также при образовании гигантских клеток в воспалительных процессах, при внедрении вирусов, обладающих оболочкой, в клетки хозяев (вирус СПИД). Рассмотренные выше механизмы действия электрических полей на бислойные мембраны и клетки дают представление о физико-химических факторах, влияющих на взаимодействие клеточных мембран, которые приводят к их слиянию. Однако, конкретные молекулярные механизмы этого биологического явления намного сложнее. Основная особенность состоит в активном участии специальных мембранных белков в процессе слияния. В качестве примера рассмотрим роль гемоагглютинина (ГА) вируса простудных заболеваний (Уайт, 1992). Молекула этого белка состоит из трех субъединиц, каждая из которых содержит пептид с большим количеством гидрофобных аминокислот. Г А играет важную роль в первичном связывании вируса и атакуемой им клетки. Вследствие изменения третичной структуры Г А вируса происходит освобождение его глобулярных пептидов и их присоединение к мембране атакуемой клетки. [c.46]

    Как определить, может ли одноцепочечная РНК, выделенная из РНК-со-держащего вируса, выполнять непосредственно роль мРНК или служить только в качестве комплементарной цепи, направляющей процесс образования мРНК после инфекции соответствующего хозяина  [c.102]

    Репликация геномов РНК-вирусов точно так же, как и репликация ДНК, связана с образованием комплементарных полинуклеотидных цепей. У большинства РНК-вирусов этот процесс катализируют РНК-зависимые РНК-полимеразы (репликазы), кодируемые РНК-хромосомой вируса. Эти ферменты часто включаются в дочерние вирусные частицы, и тогда при вирусной инфекции они уже сразу имеются в наличии, т.е. могут немедленно начинать репликацию вирусной РНК. У так называемых вирусов с негативным геномом, к которым принадлежа , в частности, вирусы гриппа и везикулярного стоматита, репликазы всегда включаются в капсид. Вирусы этой группы называются так потому, что > них инфицирующая цепь не кодирует никаких белков только комплементарная ей цепь несет необходимые для этого нуклеотидные последовательности. Таким образом, инфицирующая цепь не может индуцировать размножение вируса без предобразованной репликазы. У РНК-вирусов с позитивным геномом, например у вируса полиомиелита, дело обстоит иначе здесь вирусная РНК может выступать в роли мРНК, и у этих вирусов голый геном инфекционен. [c.317]

    Опыты с ДНК, выделенной из клеток опухолей, также свидетельствуют о существовании онкогенов. Метод обнаружения клеточных онкогенов получил название переноса геиов или трансфекции . Он основан на том, что некоторые гены, присутствующие в опухолевых клетках, могут вызывать трансформацию нормальных клеток в культуре. Из опухолевых клеток выделяют ДНК, осаждают фосфатом кальция и добавляют к клеткам-реципиентам (обычно в этой роли выступает линия мыщиных фибробластов NIH/3T3). Через 1—2 недели под микроскопом наблюдают образование фокусов трансформации. Клетки, составляющие фокус, меняют свою морфологию из распластанных они становятся округленными. Из трансформированных клеток выделяют ДНК, и опыт повторяют. Так делают несколько раз, при этом уменьшается количество ДНК, не участвующей в переносе признака трансформации, и, следовательно, облегчается идентификация специфических генов (при помощи гибридизации по Саузерну (см. гл. 36)). С помощью этого метода было идентифицировано около 20 клеточных онкогенов некоторые из них сходны с геном ras вируса саркомы мыщей. Эти клеточные онкогены либо вообще не отличаются от нормальных генов, либо имеют небольшие структурные особенности (см. ниже). В первом случае при опухолевом перерождении может меняться регуляция их экспрессии. [c.359]

    К фенотипическим особенностям вирусов гриппа относятся различия биологической активности в разных клеточных системах хозяина, включая различия в ареале хозяев, органоснецифично-сти и распространенности среди животных, а также в бляшко-образовании в разных культурах клеток. Разработаны надежные лабораторные методы, позволяющие определить происхождение отдельных сегментов РНК у реассортантных вирусов, возникших в естественных условиях или полученных в лаборатории. Это позволило получить ранее недоступную информацию о роли отдельных генов или их комбинаций в возникновении некоторых биологических различий, а также приступить к изучению ряда фундаментальных вопросов сложных молекулярных механизмов, [c.296]

    Вирусы гриппа типа А были выделены от различных животных — свиней, лошадей, а также домашних и диких птиц. Эти штаммы вируса принадлежат к 13 подтипам по НА и 9 подтипам по NA отмечено также множество различных комбинаций HA/NA [24]. В частности, расширенные исследования, проведенные в популя-цида птиц, позволили выделить большое число птичьих штаммов. В настоящее время почти не осталось сомнений в том, что-птицы представляют обширнейший естественный резервуар вирусов гринна тина А. Продолжающиеся исследования обещают раскрыть роль этого животного резервуара в образовании новых штаммов, вызывающих заболевания у людей. [c.318]

    Гетероциклические основания (пурины и пирими-дины) являются исходными структурными элементами молекул нуклеозидов и нуклеотидов. Нуклеотиды присутствуют во всех без исключения живых клетках, выполняя целый ряд ключевых функций. В их числе построение нуклеиновых кислот из рибо-30- и дезоксирибозонуклеозидмонофосфатных звеньев (РНК и ДНК соответственно) перенос энергии (АТР) образование коферментов (АМР), участие в роли акцепторов в окислительном фосфорилирова-нии (ADP), а также в качестве аллостерических регуляторов активности ряда ферментов и вторичных посредников (сАМР и GMP). Синтетические аналоги природных нуклеотидов, способные замещать их в структуре нуклеиновых кислот и оказывать ингибирующее действие на синтез РНК и ДНК, находят применение в химиотерапии рака. Для подавления роста опухолевых клеток или определенных вирусов используют 5-фторурацил, 5 -ио- [c.5]


Смотреть страницы где упоминается термин Вирусы, роль образовании: [c.24]    [c.579]    [c.193]    [c.53]    [c.359]    [c.411]    [c.192]    [c.355]    [c.61]    [c.5]    [c.78]    [c.155]    [c.227]    [c.323]    [c.294]   
Перекись водорода (1958) -- [ c.359 ]




ПОИСК







© 2025 chem21.info Реклама на сайте