Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крахмал стабилизация

    Стабилизацию лиофобных дисперсных систем с помощью лиофильных коллоидов (в первую очередь, ВМС) называют защитным действием стабилизаторов (коллоидной защитой). Зигмонди предложил количественно оценивать защитное действие стабилизатора в золотых числах . Золотым числом называется максимальная масса стабилизатора (в миллиграммах), которая предотвращает коагуляцию 10 мл золя золота (изменение окраски от красной до синей) при добавлении 1 мл 10%-ного раствора хлорида натрия. Таким образом, чем больше золотое число , тем меньше защитное действие стабилизатора. Напрпмер, желатина имеет очень малое золотое число (0,01), что свидетельствует о ее сильном защитном действии. Несколько больше золотое число у гуммиарабика (0,5), еще больше у картофельного крахмала (20). Иногда за стандарт выбирают вместо золя золота золи серебра ( серебряное число ), конго рубинового ( рубиновое число ) и др. [c.340]


    При совместной химической обработке промывочных жидкостей гипаном и другими реагентами-понизителями водоотдачи (КМЦ различных марок, крахмал, УЩР и др.) достигается лучший эффект стабилизации, чем при использовании каждого из этих реагентов в отдельности (проявляется синергетический эффект). [c.163]

    Крахмальный клейстер. 2 г растворимого крахмала смешивают с 10 мл холодной воды и вливают эту кашицу в 100 мл кипящей воды. Кипятят 5—10 мин, охлаждают, дают отстояться и, если образуется хлопьевидный осадок, сливают с него раствор (или фильтруют). Для стабилизации добавляют 0,1 г гидроксида калия или салициловой кислоты (можно также 0,01 г иодида ртути). [c.191]

    ПАВ, уменьшая поверхностную энергию дисперсной системы, как бы защищают ее от возможного нарушения устойчивости. Поэтому повышение устойчивости дисперсных систем под влиянием ПАВ называют коллоидной защитой или стабилизацией коллоидов. В качестве стабилизирующих веществ для золей обычно, используют высокомолекулярные ПАВ, желатин, альбумин, казеин, крахмал, пектин, каучуки, мыла поливалентных металлов, гемоглобин, мыла щелочных металлов и т. д. [c.282]

    Использование веществ, способных за счет образования структурно-механического барьера к предельно сильной стабилизации даже концентрированных эмульсий, позволяет получать многие технические эмульсии, употребляемые, например, в процессах эмульсионной полимеризации, в качестве смазочно-охлаждающих жидкостей. Широкое применение подобные ПАВ, особенно естественного происхождения, имеют в пищевой промышленности, кулинарии, фармацевтике (такие ПАВ образуются, например, лри взаимодействии декстринов и их производных, появляющихся при термическом разложении и частичном окислении крахмала, с маслами). [c.289]

    В практическом отношении антитела преимущественно применялись для решения проблем идентификации и количественного определения веществ. Здесь имеется в виду использование белков как природных маркеров некоторых сырьевых материалов с целью распознавания их в продуктах питания для контроля качества. С этой целью изготовлены специфические иммунные сыворотки этих белков. Так, например, методы преципитации в геле послужили для обнаружения в пшеничной муке примесей ячменной муки [76] или в муке из твердой пшеницы примесей муки из мягкой пшеницы [90, 91]. Они могут быть использованы также для проверки отсутствия клейковины в кормовых рационах [7]. В такой стране, как ФРГ, где законодательство разрешает использовать в производстве пива только солод из ячменя и хмель, исключая особенно зерно риса и кукурузы как более дешевые источники крахмала, для контроля поступающего в продажу пива применили метод иммунохимической идентификации [98]. Иммунохимический подход (метод преципитации и RIA) также использовали для контроля запрещаемых законом в некоторых странах добавок в пиво препаратов протеаз как средства стабилизации [32]. В этих двух последних случаях проблема распознавания сложна, поскольку изготовление пива предусматривает вспенивание сусла при перемешивании, пастеризацию при стерилизации, т. е. происходит в условиях денатурации белков. Задача распознавания денатурированных бел- [c.112]


    Ферменты представляется возможным прикрепить к поверхности носителя путем сорбции к ионитам — катионитам (содержащие активные кислотные группы) или к анионитам (содержащим преимущественно основные группы). В качестве сорбентов — носителей ферментов часто используют гель гидроокиси алюминия или фосфата кальция, диатомит, модифицированный крахмал, бентониты, кизельгуры и др. Сорбцию ферментов осуществляют либо в колонках путем пропускания раствора фермента с определенной скоростью через слой ионитов, либо в реакторах, в которых сорбент определенное время перемешивают с раствором фермента. Полученный продукт затем используют как иммобилизованный ферментный препарат. Адсорбция фермента к носителю не обеспечивает их длительную стабилизацию. Более длительную стабилизацию обеспечивает ионообменное связывание фермента, например на модифицированных ионообменных целлюлозах. [c.205]

    Окрашенная коллоидная суспензия, образующаяся в щелочном растворе (приблизительно 0,1 п.), стабильна, если концентрация магния в растворе не превышает 4-10 %. Для диспергирования коллоида добавляют крахмал и глицерин стабилизации суспензии способствует добавка солянокислого гидроксиламина. В этих условиях коллоидный раствор стабилен в течение 2 ч. [c.53]

    В качестве исходных материалов применяется рисовый, маисовый и картофельный крахмал, из которых первый обладает наиболее мелкими зернами, последний — наиболее крупными. Чем мельче крахмальные зерна, которые сохраняют свою структуру и после нитрации, тем легче проходит стабилизация и тем выше достигнутая степень стойкости. В Америке, по экономическим соображениям, применяют маисовый крахмал. [c.606]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стру к турно-механ и чески м фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурно-механической стабилизации дисперсии в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.325]

    Гетерокоагуляции аналогичен процесс флокуляции, заключаю-и ийся в образовании агрегатов (хлопьев) из гетерогенных частиц в результате собирающего действия высокомолек лярных веществ, называемых флокулянтами. Механизм действия флокулянтов заключается в пх адсорбции на нескольких частицах с образованием полимерных мостиков, связывающих частицы между собой. Прн неоптимальных количествах флокулянта мол<ет наблюдаться, наоборот, стабилизация дисперсной -системы. Флокуляиты подразделяют на неорганические и органические, природные и синтетические, на ионогенные, неионогенные и амфотерные. Из неорганических флокулянтов применяется активная кремневая кислота (АК). Природными органическими флокулянтами являются крахмал, карбоксиметилцеллюлоза (КМЦ) и др. Наибольшее распространение в настоящее время получил выпускаемый промышленностью полиакриламид (ПАЛ) /—СНг—СН— , имеющий относитель- [c.345]

    Для получения высокодисперсной промывочной жидкости таким способом необходимо, чтобы раствор был пересыщенным по выделяемой фазе, и в нем надо создать условия, обеспечивающие одновременное возникновение огромного числа зародышей дисперсной фазы. При этом скорость образования зародышей должна быть намного больше скорости роста кристаллов. Практически это достигается путем введения химических реагентов (КМЦ, крахмала, КССБ и др.) при сильном перемешивании. Происходит не только достижение требуемой дисперсности, но и закрепление этого состояния, стабилизация системы. [c.41]

    В таких системах между частицами проявляют себя только силы взаимного притяжения. Стабилизация дисперсных систем обуславливается образованием вокруг коллоидных частиц адсорбционных слоев из молекул дисперсной среды и растворенных в ней веществ. Она усиливается при добавлении ПАВ и высокомолекулярных соединений. П. А. Ребиндер назвал возникновение молекулярно-адсорбционных слоев, предотвращающих слипание дисперсных частиц, структурно-механическим фактором стабилизации. Вещества, способствующие структурно-механической стабилизации, называют защитными коллоидами — это белки, пептины, крахмал, мыла, смолы, каучуки, сапонин, желатина и др. (см. гл. ХУП1). Таким образом, устойчивость золей может быть повышена как введением электролитов, так и коллоидной защитой. [c.237]


    Энергия взаимодействия (притяжения) сталкивающихся частиц может уменьшаться при адсорбции на их поверхности молекул других веществ, особенно иоверхностноактивных (ПАВ) ири этом поверхность из лиофобной может стать лиофильной с соответствующим повышением стабильности системы. Этим пользуются для стабилизации гидрофобных золей, например золотого гидрозоля прибавлением крахмала, желатина и т. п. [c.260]

    Сопоставление эффективности крахмального и других реагентов позволяет сделать вывод о его преимуществах при интенсивной солевой агрессии, если забойные температуры не слишком велики. Особенностью крахмала является устойчивая стабилизация при действии хлоридов одно- и двухвалентных металлов. Общее для всех защитных реагентов свойство разжижать насыщенные солью буровые растворы проявляется у крахмала -яе столь интенсивно, как, например, у КМЦ. Повышает стабилизирующую способность крахмала комбинирование его с другими реагентами, такими как, КМЦ или гипан. В этом случае проявляется эффект взаимной стабилизации [36]. Подобно КМЦ, действие крахмальных реагентов может быть улучшено, по мнению Р. Салатиела, добавками сульфидов, полисульфидов или гидросульфидов щелочных металлов. Добавка 10—40% хроматов к частично окисленному крахмалу для бурения, модифицированному альдегидной обработкой, превращает его, как утверждает Д. Парк, из защитного реагента в понизитель вязкости. Действие крахмала улучшает сочетание его с окисленным петролатумом, создающим структуру у буровых растворов, насыщенных солью [62]. Термостойкость крахмальных реагентов повышают добавки окзила. [c.180]

    Крахмальные реагенты в основном используются для стабилизации соленых растворов и борьбы с хлоркальциевой и хлормагние-вой агрессией при забойных температурах не более 120—130° С. Несмотря на возрастание объемов бурения в солях, это ограничение сдерживает применение крахмала и остро ставит вопрос о его замене более стабильными синтетическими реагентами. [c.180]

    Хитин нерастворим в воде, органических растворителях, реактиве Швейцера и весьма стоек к щелочам. При кислотном гидролизе он расщепляется с образованием глюкозамина. Фермент хитаза разлагает хитин и образует Л -ацетилглюкозамин. Сравнительная устойчивость хитина делает перспективной модифицирование его для получения защитных реагентов. С этой целью Р. Джонсоном были предложены водорастворимые эфиры хитина — аналоги соответствующих эфиров целлюлозы хитинсульфат, карбоксиметилхитин, карбоксиэтилхитин. Испытания этих продуктов при стабилизации соленых буровых растворов оказались обнадеживающими. Тем не менее, оценивая реагенты, полученные из структурных углеводов типа пектина, лихенина или хитина, необходимо отметить, что все они, как правило, не имеют преимуществ перед реагентами на основе эфиров целлюлозы или крахмала и по эффективности значительно им уступают. [c.188]

    Причинами обогащения газом являются поступление его из газо-пефтяных горизонтов выделение газа и воздуха, растворенных в буровом растворе при снин<ении давления, поверхностного натяжения и действия некоторых других факторов поступление в раствор воздуха, подсасываемого насосами и содержащегося в утяжелителе стабилизация образовавшейся пены реагентами, применяемыми для обработки буровых растворов. Последняя причина в связи с усилением роли химической обработки особенно значительна. Такие реагенты, как ССБ, КССБ, различные ПАВ, вызывают интенсивное пенообразование. В некоторых случаях пену вызывают УЩР, крахмал, ПФЛХ, синтаны, добавки нефти, особенно при малом содержании низкоколлоидной твердой фазы и т. п. Во многих практически важных случаях необходимость дегазации обусловлена вспениванием растворов именно в результате химической обработки. [c.211]

    Вторым методом является стабилизация системы реагентами типа карбоксиметилцеллюлоза, щелочной крахмал, лигносульфонаты и и т. п., усиливающими гидрофилизацию и способствующими струк-турообразованию. Их модифицирующее действие сочетается со структурообразованием самого реагента. Образование структур усиливают добавки, форсирующие лиофильную коагуляцию (жидкого стекла, солей и т. п.). При этом важно сохранить баланс между гидрофилизирующим и коагуляционным действием с тем, чтобы не направить процесс по пути лиофобной коагуляции. [c.332]

    В. Вейсс разработал методику обработки буровых растворов хлористым кальцием и роказал, что при этом они, помимо ингибирования, приобретают способность упрочнять неустойчивые глинистые породы [100]. Крепящий и ингибирующий эффекты усиливают по мере увеличения добавок хлористого кальция, но одновременно все больше развиваются коагуляционные процессы, сопровождающиеся ростом водоотдачи и потерей агрегативной устойчивости. В связи с этим для стабилизации необходимы реагенты с большей защитной способностью, чем гуматы (КССБ, КМЦ, сульфат целлюлозы, крахмал и т. п.), а также специальные реагенты-понизители вязкости (ССБ, хромлигносульфонаты и др.)- Четвертый обязательный компонент — известь служит для регулирования щелочности, поскольку каустик в этих растворах, реагируя с хлористым кальцием, все равно образует Са(ОН)г, но при этом уменьшает содержание кальция в фильтрате. Опыт показал, что оптимальные пределы pH 10—12. В случае необходимости в хлоркальциевые растворы дополнительно могут вводиться утяжелители и нефть. [c.342]

    Для стабилизации хлоркальциевых растворов применяют обычно ССБ, хромлигносульфонаты, КМЦ или КССБ. Преимущества последней в устойчивости к хлоркальциевой агрессии, но в большинстве случаев она вызывает вспенивание. В рецептурах хлоркальциевых растворов применимы также ПФЛХ, окисленный лигнин, крахмал, сульфат целлюлозы и другие реагенты. [c.344]

    Г. находят применение в пром-сти, медицине и с. х-ве, напр, для получения сахарных сиропов из крахмала и целлюлозы, осветления и стабилизации соков и виноматериа-лов, лечения ожогов, заболеваний желудочно-кишечного тракта, тромбозов. [c.561]

    Вещества, увеличивающие вязкость. Эта группа вспомогательных веществ используется главным образом для стабилизации эмульсий и для повышения вязкости мазей, суппозитор-ных основ и суспензий. К веществам, увеличивающим язкость, относятся продукты природного и синтетического происхождения. Чаще других применяют камеди, пектины, крахмал, агар-агар, натрия альгинат, аэросил, желатозу, производные целлюлозы, поверхностно-активные вещества, бентониты, алюминия стеарат и т. д. Применение веществ, увеличивающих вязкость, улучшает проведение технологических процессов и повышает товароведческие показатели лекарств. [c.28]

    Солюбилизаторами в аминокислотных растворах служат многоатомные спирты - полиолы сорбит и ксилит, являющиеся одновременно и энергетическими компонентами растворов. Использование с подобной целью глюкозы нежелательно, так как в случае ее применения последующая тепловая стерилизация раствора ведет к появлению окраски либо образованию осадка (взвеси). При этом образующиеся фруктозаминокислоты обладают меньшей биологической и питательной ценностью, чем свободные аминокислоты, чего не происходит при замене сахаров на полиолы. Для облегчения растворения аминокислот и стабилизации растворов могут быть использованы и биополимеры, повышающие вязкость растворов и предотвращающие осаждение желатин, крахмал, альгиновая кислота. [c.348]

    Для стабилизации коллоидного раствора адсорбционного соединения ] Ig(0H)2 в качестве заш итных коллоидов предложены крахмал, желатин, гуммиарабик, глицерин, поливиниловый спирт, полиакрилат иатрия, натриевая соль карбоксиыетилцел-люлозы и смеси некоторых из них друг с другом. Из них крахмал, гуммиарабик и желатин в настояш ее время почти не применяются из-за ряда недостатков. Заш итпое действие крахмала невысокое применение смеси с глицерином [102, 737,1032] повышает заш ит-ные свойства крахмала, но и в этом случае использование его но очень эффективно [737]. Раствор крахмала нестоек при хранении, мутнеет из-за этого воспроизводимость результатов неудовлетворительная [277]. При применении гуммиарабика оптическая плотность довольно сильно изменяется во времени [1032], кроме того, калибровочный график сильно искривлен, следовательно, и точность анализа невысокая [1108]. Недостаток желатина в том, что при сравнительно высоких содержаниях магния (0,05— 0,15 мг) оптическая плотность надает со временем (на 8% в течение 30 мин.) [1108]. Продажные препараты желатина обычно сильно загрязнены примесями, в том числе и магнием, притом различные партии желатина ведут себя по-разному. [c.115]

    С точки зрения реолога, одним из важнейших ингредиентов такой системы является защитный коллоид, в качестве которого используют крахмал или метилцеллюлозу. Эти вещества повышают вязкость дисперсионной среды (воды) и тем самым способствуют стабилизации диспергированных частиц. Защитные коллоиды также влияют на зависимость вязкости от скорости сдвига, что приводит к следующим результатам  [c.81]

    Образование коллоидных растворов металлического-золота под действием восстановителей. В качестве восстановителей употребляют хлористое олово [182, 291], бромистое олово [242], различные фенолы [292], галловую кислоту [293], аскорбиновую кислоту [294], перекись водорода [295], формальдегид [296] и т. п. Для стабилизации коллоидов часто добавляют жачатину или крахмал. Окраска коллоидных растворов золота зависит от степени дисперсности металла и определяется природой восстановителя, коицантрацией электролитов и кислотностью растворов. Так, в кислой среде цвет золя может быть желтым, зеленым, фиолетовым, красным, розовым, а в щелочной среде — фиолетовым, синим или красным. [c.185]

    К третьей группе относятся ПАВ, образующие гелеобразную структуру при повышенной концентрации. Поэтому в адсорбционном слое, где концентрация значительно превышает объемную, образуются прочные защитные слои, которые обеспечивают стабилизацию межфазной поверхности. Эти ПАВ широко используются при обработке буровых растворов для предотвращения коагуляции путем создания структурно-механического барьера с гидрофильной наружной поверхностью (например, карбоксиметилцеллюлоза, крахмал). В растворах на углеводородной основе ПАВ этой группы применяют в качестве стабилизаторов гидрофобноэмульсионных растворов. [c.29]

    Для стабилизации подобных коллоидных систем, особенно )и получении их для колориметрического определения ионо(В, щменяют коллоидную защиту . Этот прием заключается том, что при прибавлении гидрофильного коллоида к золю дрофобного коллоида частицы последнего адсорбируют на оей поверхности гидрофильный коллоид, который защищает дрофобный коллоид от действия коагулянтов и предупреждает КИМ образом выпадение осадков. В качестве защитных кол-лдов в анализе часто применяют крахмал, желатину, гумми-абик, агар-агар и др. [c.129]


Смотреть страницы где упоминается термин Крахмал стабилизация: [c.336]    [c.184]    [c.356]    [c.265]    [c.360]    [c.108]    [c.94]    [c.288]    [c.73]    [c.114]    [c.186]    [c.452]    [c.686]    [c.121]    [c.321]    [c.484]    [c.336]    [c.660]    [c.167]   
Перекись водорода (1958) -- [ c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал



© 2025 chem21.info Реклама на сайте