Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализатор хроматографические

    Парофазный анализатор модели Р45 (рис. 2.17) представляет собой современный газовый хроматограф с дифференциальной газовой схемой, программированием температуры капиллярной хроматографической колонки и пятью наиболее распространенными детекторами, двумя универсальными —дифференциальным ионизационно-пламенным, катарометром и тремя селективными—захвата электронов (галогенсодержащие вещества), пламенно-фотометрическим (5- и Р-содержащие вещества) и термоионным Ы- и Р-содержащие вещества). Возможна одновременная работа двух ионизационных детекторов. В газовой схеме предусмотрена обратная продувка хроматографической колонки для удаления малолетучих веществ и быстрой подготовки прибора к следующему анализу. Имеется испаритель жидких проб, что позволяет использовать прибор не только для парофазного анализа, но и как обычный универсальный хроматограф. [c.97]


    Анализатор включает в себя все узлы, необходимые для ироведения хроматографического анализа дозатор, колонку или комбинацию нескольких колонок, переключатель и детектор. В приборах, предназначенных для контроля нескольких потоков, в анализатор входит также многопоточный переключатель. [c.382]

    Величина скорости сканирования имеет особенно важное значение в хромато-масс-спектрометрии, где возникает необходимость очень быстрой записи масс-спектра в процессе элюирования соединений. Количество вещества, поступающего в ионный источник из хроматографической колонки, постоянно меняется, и соотношение между интенсивностями пиков в начале и конце масс-спектра может быть искажено, если спектр регистрируется с малой скоростью сканирования. Поэтому в хромато-масс-спектрометрах особенно эффективны квадрупольные анализаторы. [c.54]

    Следует отметить, что входящие в агрегатную систему анализаторы хроматографического спектра, предназначенные для автоматического управления, вырабатывают управляющий пневматический сигнал в зависимости от изменения разности между фактической концентрацией анализируемых компонентов и их заданными значениями. [c.123]

    В последние годы в практику автоматических аналитических измерений широко внедряются хроматографические анализаторы. Эти приборы обладают рядом преимуществ, основным из которых является возможность избирательного определения концентрации нескольких компонентов. [c.263]

    Детекторы. В хроматографической колонке смесь разделяется на компоненты. Однако это лишь первая задача. Вторая задача состоит в том, чтобы установить, из каких компонентов состоит смесь и какова концентрация каждого пз компонентов, т. е. определить качественный и количественный состав газа. Для этого на выходе нз хроматографической колонки устанавливают так называемый детектор. С его помощью обнаруживают в газе-носителе компоненты исследуемой смеси он выдает сигналы, пропорциональные их количеству. Детектор по существу представляет собой анализатор газа, задача которого облегчена тем, что он имеет дело не со сложной многокомпонентной смесью, а лишь с чистым газом-носителем или его смесью с одним из компонентов пробы газа. [c.64]

    Принципиальная трудность сочетания газовой хроматографии с масс-спектрометрией состоит в том, что вещества, находящиеся при атмосферном давлении (при котором проводится хроматографическое разделение), необходимо ввести в высокий вакуум (блок анализатора масс-спектрометра обычно работает при давлении около 10 -10 мм рт.ст.). Для преодоления этой несовместимости разработаны различные интерфейсы. Основные компоненты системы ГХ-МС показаны на рис. 14.2-1. [c.599]


    Когда разрабатывали газовую хромато-масс-спектрометрию, ГХ-разделения проводили на набивных колонках со скоростями потока порядка 60 мл/мин и выше. Такая скорость потока несовместима с высоким вакуумом масс-спектрометрической системы. Решающим моментом коммерческого успеха гибридных ГХ-МС-систем было создание подходящего интерфейса, позволяющего преодолеть зто ограничение. Требования к интерфейсу состоят в следующем возможность снижения объемной скорости потока с ГХ-колонки до такого уровня, чтобы можно было поддерживать высокий вакуум масс-анализатора селективное отделение газа-носителя сохранение ненарушенными результатов хроматографического разделения. [c.600]

    Элмер [5] (впервые применившей этот принцип), пневматический способ дозирования реализуется несколько иначе. Сосуд с образцом соединяется с газовой схемой хроматографа у входа в разделительную колонку. После выравнивания давления кратковременно прекращается подача газа-носителя в колонку. Этим достигается некоторое снижение давления в газовой линии и создание перепада давления между сосудом с пробой (Р1) и входом в хроматографическую колонку (Рг)- Объем пробы в этом случае регулируется временем перекрывания линии газа-носителя. Подробно пневматические системы дозирования рассмотрены в последующих разделах при описании специальных приставок и автоматических парофазных анализаторов. [c.78]

Рис. 181. Типичные профили хроматографической алюции аминокислот, окрашенных нингидрином, после разделения в аминокислотном анализаторе Рис. 181. Типичные профили хроматографической алюции аминокислот, окрашенных нингидрином, <a href="/info/737216">после разделения</a> в аминокислотном анализаторе
    В работах по парофазному анализу широко используются автоматические приборы, специально сконструированные фирмой Перкин — Элмер , выпустившей уже три модели таких анализаторов Р40 [18], Р42 [19] и Р45 [20]. Эти приборы представляют собой универсальные хроматографы, дополнительно укомплектованные системами термостатирования сосудов для установления равновесия и электропневматического дозирования равновесного газа непосредственно в хроматографическую колонку. Выпуск трех моделей парофазных анализаторов фирмой Перкин — Элмер обусловлен совершенствованием конструкции и расширением возможностей как систем термостатирования исследуемых образцов и дозирования равновесного газа, так и собственно газового [c.96]

    Анализаторы газов и жидкостей хроматографические. ГОСТ 26703-85. - М. Госкомитет СССР по стандартам, 1985. - 12 с. [c.133]

    Аминокислотный состав устанавливается путем анализа пептидных и белковых гидролизатов в основном хроматографическими методами. В настоящее время такой анализ осуществляется с помощью аминокислотных анализаторов. [c.345]

    Масс спектрометр должен работать в условиях вакуума анализатор — Ю —10 Па, источник ионов при ЭУ ионизации— 10" —Ю Па, при ХИ — 0,1—100 Па Поступление в ионный источник большой массы газа из хроматографической колонки требует дифференциальной откачки источника и анализатора Насос, откачивающий ионный источник, должен обладать высокой производительностью Скорость поступления в ионный источник потока газа (чаще всего гелия) в ГХ — МС равна обычно 0,5—10 мл/мин (при стандартных условиях). Для откачки такого потока используются мощные диффузионные масляные насосы со скоростью откачки 50—1000 л/с или турбомолекулярные насосы Последние обладают тем преимуществом, что не содержат масла, которое может давать вклад в фоновый масс спектр Они не столь чувствительны к разгерметизации вакуумной системы и требуют меньше времени для приведения в рабочее состояние [c.20]

    Любая хроматографическая установка состоит из блока подготовки газов, дозатора газовых и жидких проб, хроматографической колонки, детектора, регистратора и электрических блоков, регулирующих температуру анализатора и питающих детекторы. [c.5]

    Сигнал детектора через усилитель постоянного тока поступает на электронный потенциометр РЭПВ-2, регистрирующий хрома-тограмму. Одновременно пневматический сигнал, соответствующий высоте-пика, поступает в блок запоминания. Последний запоминает на время анализа сигнал, отвечающий целевому компоненту, и передает его на систему регулирования. Соответствующий сигнал записывается также на ленте регистратора 1РЛ-29А. В комплект прибора может быть включен цифровой анализатор хроматографического спектра АХСЦ-14/1, представ- [c.326]

    Сигнал детектора через усилитель постоянного тока поступает на электронный потенциометр РЭПВ-2, записывающий хромато-грамму. Одновременно пневматический сигнал, соответствующий высоте пика, поступает в блок запоминания. Последний запоминает на время анализа сигнал, отвечающий целевому компоненту, и передает его на систему регулирования. Соответствующий сигнал записывается также на ленте регистратора 1РЛ-29А. В комплект прибора может быть включен цифровой анализатор хроматографического спектра АХСЦ-14/1, представляющий собой ЭВМ и предназначенный для расчета концентраций компонентов анализируемой смеси методом внутренней нормализации (по площадям пиков). [c.299]


    Анализ может быть проведен на любом хроматографическсм приборе, имеющем датчик-анализатор с термостатированной камерой для помещения хроматографической колонки и дифференциальный детектор по теплопроводности, например на отечественном хроматографе ХЛ-3. [c.70]

    Целью настоящей работы являлось получение а- и р-бу-тиленов с возможно меньшим количеством лримесей для разработки автоматических анализаторов. Эта задача была решена дутем применения препаративного хроматографического способа в сочетании с глубоким охлаждением. [c.54]

    Вымываемые из хроматографической колонкн компоненты смеси могут быть направлены также в какой-либо анализатор и проанализированы одним из химических или физических методов. Возможно сочетание обоих способов. [c.114]

    Настоящий автоматический анализатор ионов — бумажный хроматографический титрометр разработан в Советском Союзе. Он имеет скромный вид узкой (несколько миллиметров) полоски фильтровальной бумаги, равномерно импрегнированной тем или иным осадителем ионов, например карбаминатом свинца — для осаждения ряда катионов или нитратом серебра — для осаждения анионов. Количество импрегната, приходящееся на единицу площади поверхности полоски (титр бумаги), известно. Анализ раствора производится впитыванием его в полоску до первой метки, а затем впитыванием растворителя (обычно воды) до второй метки, более удаленной от впитывающего конца полоски, чем первая метка. Разделение смеси ионов, например хлора, брома, иода, происходит со скоростью впитывания, причем высота зоны каждого иона обратно пропорциональна титру бумаги. Результаты анализа считываются со шкалы, заранее нанесенной на полоску в соответствии с титром бумаги. Анализ при помощи этого анализатора — минутное дело, доступное всем, а не только химикам. Он может быть легко изготовлен в любой лаборатории. [c.15]

    Специфика хроматографического анализа аминокислот определяется особенностями этой группы сорбатов, в которую входят представители, сильно различающиеся по кислотно-основным свойствам и УФ-спектрам. Работы этого класса можно выполнять различными методами, используя либо стандартную аппаратуру для ВЭЖХ, либо специализированные приборы — аминокислотные анализаторы. Выбор оптимального варианта диктуется характером аналитической задачи необходимой чувствительностью, наличием в образце веществ других классов, присутствием лишь нескольких аминокислот, либо всего набора белковых аминокислот. [c.328]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Наиб, широко применяют хим. способы М., к-рые основаны гл. обр. на окислит.-восстановит. р-циях. При этом реагентами служат окислители и восстановители в любом агрегатном состоянии. Обычно анализируемый объект подвергают сухому нлн мокрому окислению. Сухое окисление можно осуществить, напр., кислородом воздуха при нагр. в прнс т. катализаторов или без них (в трубке, тигле, муфельной печи, калориметрич. бомбе). Этот способ используют при анализе мн. прир. объектов (битумы, смолы и др.) для определения в них таких элементов, как Н, В, С, N, S, Р, галогены и др. Одним из способов сухой окислит. М. является сплавление с окислителями (наиб, часто используют NajOi). Однако из полученного продукта сложно выделить отдельные составляющие для послед, их анализа, что связано с мешающим взаимным влиянием содержащихся в нем в-в. Окислительную М. применяют, в частности, для определения азота в орг. соед. по методу Дюма. В качестве окислителей используют оксиды меди(П), никеля, марганца, ванадия, свинца, кобальта (иногда с добавлением Oj). в автоматич. анализаторах сухую окислит. М. осуществляют газообразным кислородом или твердыми окислителями в присут. катализатора элементы определяют хроматографически в виде Oj, HjO, Nj, SOj и др. [c.88]

    Интерфейс с электрораспылением (ЭРИ) работает при значительно более низких скоростях потока, обычно 1-10 мкл/мин. Процесс ионизации с электрораспылением включает распыление потока жидкости в аэрозоль с каплями, несущими большой заряд, и ионизацию определяемых молекул после удаления растворителя из заряженных капель. ЭРИ относится к интерфейсам АДИ, поскольку проба вводится после соответствующего деления с хроматографической колонки или непосредственно через инфузионный аппарат с помощью иглы из нержавеющей стали в десольватационную камеру при атмосферном давлении (рис. 14.3-7). В то время как игла находится при заземленном потенциале, к цилиндрическому электроду прикладывается сильное электрическое поле (2-5 кВ), которое заряжает поверхность жидкости, выходящей из иглы, при этом создается тонкий аэрозоль из заряженных капелек. Двигаясь в электрическом поле, капельки проходят через поток осушающего азота. Поток газа предназначен для испарения растворителя, а также чтобы предотвратить попадание незаряженных частиц в источник ионов. Затем ионы проходят через капилляр и попадают в вакуум первого уровня откачки, а затем, после прохождения через систему линз и дальнейшую откачку, в масс-анализатор. [c.627]

    Автоматические аминокислотные анализаторы все время совершенствуются [149]. Современные чуиствнтельные автоматические анализаторы требуют для разделения белкового гидролнзата 2 — 3 ч. Цех и Вольтер предложили жидкостную хроматографическую систему под давлением это позволяет проводить анализ за 45 мни, причем предел обнаружения лежит в области пикомолей. [c.60]

    Одним из направлений использования пористых полимерных сорбентов при анализе газов является использование их для элементного анализа соединений [69—72]. Для идентификации органических веществ предложено хроматографически разделенные компоненты направлять сразу же в элементный анализатор. [c.116]

    Чтобы количественно проанализировать гетерополимеры, после сжигания образцов применяют различные методы, чаще всего титриметрические, фотометрические и электрохимические. В последние годы для определения углерода и водорода, а также азота, серы и кислорода используют СНК- и СНК08- анализаторы, в которых количество продуктов разложения определяют хроматографическим методом. Например, анализатор элементного состава(модель И08)фирмы Р180К8 является первым в мировой практике прибором, позволяющим определять элементы С, Н, К, 8, О в одной пробе. Все более широкое применение находит ионная хроматография, которая позволяет определять с высокой чувствительностью несколько ионов одновременно в одной пробе. [c.38]

    Определение микроструктуры полимеров осуществляют методами гакционной и пиролитической газовой хроматографии, а также пу-5м сочетания химических реакций, проводимых вне хроматографа, с ледующим газохроматографическим анализом продуктов реакции. 1я этой же цели используют хроматографические анализаторы эле-рентного состава, разделяющие оксиды азота, углерода и воду, обра-f ющиe я при сжигании образца. [c.49]

    В настоящее время выпускается несколько типов автоматизированных анализаторов, предназначенных для определения углерода, водорода, азота и кислорода в органических веществах. Кроме реакционного узла и детекторов, которые практически одинаковы во всех приборах, важнейшим отличающим признаком является сепарационный узел с электрооборудованием. У новейших моделей приборов, основанных на газохроматографическом принципе сепарации (Хьюлет-Пакард, модель 185, Карло Эрба, модель 1100) обработка электрического сигнала катарометра связана с применением точного интегратора, который дает возможность получать более точные результаты, чем простое измерение высот хроматографических ступеней [47.  [c.51]

    В анализе органических веществ не потерял своего значения элементный анализ на углерод, водород, кислород, азот, серу, галогены. В настоящее время элементный анализ проводится в основном с применением автоматических анализаторов. Такие автоматические анализаторы позволяют использовать очень малые навески вещества (0,1—0,3 мг) и получать готовые данные о щюцентном содержании элементов за 8—10 мин. Применяются методы элементного анализа с разнообразными электрохимическими, спектрофотометрическими, хроматографическими и фугими инструментальными приемами окончания анализа. Разработаны [c.474]


Библиография для Анализатор хроматографические: [c.105]   
Смотреть страницы где упоминается термин Анализатор хроматографические: [c.122]    [c.123]    [c.123]    [c.138]    [c.140]    [c.129]    [c.200]    [c.244]    [c.250]    [c.85]    [c.80]    [c.335]    [c.339]    [c.115]    [c.13]    [c.54]    [c.556]    [c.939]   
Газовая хроматография в практике (1964) -- [ c.7 ]

Газовая хроматография в практике (1964) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Анализаторы

Градуировка автоматических детекторов хроматографических анализаторов для анализа примесей

Градуировка автоматических детекторов хроматографических анализаторов методом постоянной дозы

Градуировка автоматических детекторов хроматографических анализаторов по газовым смесям неизвестных концентраций

Градуировка автоматических детекторов хроматографических анализаторов по эталонным смесям и чистым компонентам с использованием объемных измерений

Принцип действия хроматографического анализатора



© 2025 chem21.info Реклама на сайте