Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография газовая дифференциальная

    Парофазный анализатор модели Р45 (рис. 2.17) представляет собой современный газовый хроматограф с дифференциальной газовой схемой, программированием температуры капиллярной хроматографической колонки и пятью наиболее распространенными детекторами, двумя универсальными —дифференциальным ионизационно-пламенным, катарометром и тремя селективными—захвата электронов (галогенсодержащие вещества), пламенно-фотометрическим (5- и Р-содержащие вещества) и термоионным Ы- и Р-содержащие вещества). Возможна одновременная работа двух ионизационных детекторов. В газовой схеме предусмотрена обратная продувка хроматографической колонки для удаления малолетучих веществ и быстрой подготовки прибора к следующему анализу. Имеется испаритель жидких проб, что позволяет использовать прибор не только для парофазного анализа, но и как обычный универсальный хроматограф. [c.97]


    Чтобы воспользоваться преимуществами дифференциальной записи кривой, подобной той, которая получается в проявительной хроматографии, где каждый компонент образует индивидуальный пик, в проточной газовой хроматографии используют дифференциальную систему детектирования, представленную на рис. 2. [c.123]

Рис. 20-1. Схема типичного газового хроматографа с дифференциальным детектором. Рис. 20-1. <a href="/info/1728596">Схема типичного</a> <a href="/info/5704">газового хроматографа</a> с дифференциальным детектором.
    Практическое осуществление подобного приема требует наличия газового хроматографа с дифференциальным детектирующим устройством, в противном случае это связано с рядом неудобств. При исследовании проб неизвестного происхождения с помощью предлагаемого метода концентрирования для надежной качественной идентификации анализируемых соединений мы использовали сочетание газо-жидкостной и тонкослойной хроматографии. Сначала проводили анализ с помощью газо-жидкостной хроматографии и анализируемые соединения характеризовали абсолютными и относительными величинами удерживания, а затем пробу наносили на хроматографическую пластинку и анализируемые соединения характеризовали определенными величинами R . [c.171]

    Генри. Такой равновесной, но не идеальной хроматографии отвечает дифференциальное уравнение материального баланса в элементарном слое колонки [54, 55] (равенство скорости подачи адсорбата с газом-носителем и скорости распределения его между газовой фазой и адсорбционным слоем на поверхности адсорбента)  [c.105]

    Имеющиеся в хроматографах детекторы по действию подразделяются на интегральные и дифференциальные. С помощью интегрального детектора регистрируется суммарное количество вещества, прошедшее через детектор. Хроматограмма, полученная с помощью такого детектора, состоит из ряда ступеней. Дифференциальные детекторы регистрируют мгновенное изменение концентрации вещества. Полученная при этом хроматограмма представляет собой график зависимости мгновенного изменения свойств газового потока от времени. Для идентификации и количественного определения веществ методом газо-жидкостной хроматографии используют дифференциальные детекторы. [c.61]


    В газовой хроматографии, как правило, количественный анализ проводится не путем отбора отдельных порций анализируемого вещества на выходе из колонки, а по полученным на ленте самописца хроматограммам. Метод расчета количественного состава смеси зависит от типа применяемого детектора дифференциального или интегрального. В хроматографическом анализе почти всегда применяются дифференциальные детекторы, поэтому здесь рассматриваются только методы расчета по дифференциальным хроматограммам. [c.50]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    Рассмотренные элементы газовой схемы являются необходимыми частями любого хроматографа, хотя газовые схемы современных приборов намного сложнее. Введение дифференциальной системы детектирования, наличие двойных колонок, требующих нескольких идентичных газовых [c.88]

    В газовой хроматографии, как правило, анализ проводят не отбором отдельных порций анализируемого газа и не послойно, как делают в хроматографическом анализе жидкостей, а непрерывно, непосредственно на выходе из колонки. Для этой цели применяют детекторы различного типа, чаще всего дифференциальные, дающие хроматограммы из ряда пиков. Успех хроматографического анализа, а также его точность в значительной степени зависят от метода расчета хроматографических пиков. [c.97]

    Существенно обновлен ассортимент практических работ, отражающий программу специального практикума по газовой хроматографии на химическом факультете Ленинградского университета. Включены разработанные авторами методики, иллюстрирующие новые варианты использования параметров удерживания и дифференциального выделения сигнала детектора, классификации неподвижных фаз и количественного парофазного анализа. [c.3]

    Дифференциальными по форме и по природе являются аналитические сигналы, основанные, на непрерывной регистрации какого-либо экстенсивного свойства во времени. Таковы, например, аналитические сигналы в методах газовой или элюентной хроматографии, в которых непрерывно регистрируются значения теплопроводности или электрической проводимости, оптической плотности, рефракции. Колоколообразные, симметричные или асимметричные, размытые или компактные по форме пики на выходной кривой хроматограммы — дифференциальные аналитические сигналы, количественная интерпретация которых может быть проведена лишь после интегрирования сигнала (вычисления площади  [c.12]

    При изотермической газовой хроматографии положение полосы вещества и колонке описывается дифференциальным уравнением [c.395]

    Во ВНИИ НП для анализа таких газов применяют метод газо-жидкостной хроматографии, с использованием полярных и неполярных жидких фаз, и газо-адсорбционной хроматог рафии с применением природных синтетических и модифицированных адсорбентов [П. Сочетание этих методов дает возможность анализировать газовые смеси, содержащие 20—25 компонентов, за 35—40 мин. Для анализа используется лабораторный хроматограф ХЛ-3 (с дифференциальным детектором по теплопроводности и полупроводниковыми термисторами в качестве чувствительных элементов мостовой схемы), серийно выпускаемый отечественной промышленностью [21. [c.79]


    В табл. 11.12 приведены некоторые характеристики и применяемость наиболее часто используемых в газовой хроматографии газов. Кроме перечисленных в табл. 11.12 газов иногда для подавления сорбционной активности носителя в качестве газа-носителя используют пары воды. В этом случае применяют специальные установки для стабильной подачи воды — генераторы пара и дифференциальный пламенно-ионизационный детектор (ДПИ), оптимизированный для работы с парами воды. Количество воды в резервуарах должно обеспечивать по крайней [c.125]

Рис. 11.6. Пневматическая схема газового хроматографа модели 3700 с дифференциальным ДПИ Рис. 11.6. Пневматическая <a href="/info/1620196">схема газового хроматографа</a> модели 3700 с дифференциальным ДПИ
    В связи с широким применением в газовой хроматографии программирования температуры чаще всего применяют дифференциальный ДПИ с двумя одинаковыми колонками при строго одинаковых экспериментальных параметрах как в колонке, так и в детекторе. Это позволяет устранить влияние колебаний расхода газа-носителя и температуры, связанных с загрязнением газа-носителя и улетом неподвижной фазы из колонки, на фоновый ток детектора. Кроме того, такое применение позволяет значительно снизить дрейф нулевой линии и улучшить стабильность работы детекторов. В этом случае один из детекторов, в который поступает анализируемая проба, является рабочим, а другой сравнительным, [c.165]

    Всего для газовой хроматографии предложено более 60 типов детектирующих систем. По общепринятой классификации детекторы подразделяются на дифференциальные и интегральные по форме зарегистрированного сигнала. Дифференциальные детекторы измеряют мгновенное различие в концентрации вещества в потоке газа-носителя. Хроматограмма, зарегистрированная таким детектором, представляет собой ряд пиков, площадь которых пропорциональна количеству разделенных соединений. Интегральные детекторы измеряют суммарные количества соединений, выходящих из колонки. Хроматограмма в этом случае ступенчатая, высота ступеней пропорциональна количеству соответствующих соединений. [c.260]

    В лаборатории авторов для исследования равновесия жидкость—пар в многокомпонентных системах успешно применяется прибор Мультифракт Р-45 . Он представляет собой современный газовый хроматограф с дифференциальной газовой схемой, блоком программирования температуры и пятью детекторами пламенно-ионизационным катарометром захвата электронов термо-нонным (N- и Р-содержащие вещества) пламенно-фотометрическим (S- и Р-содержащие вещества). Возможна одновременная работа двух ионизационных детекторов. В газовой схеме предусмотрена обратная продувка хроматографической колонки для удаления труднолетучих веществ. Имеется испаритель жидких проб, что позволяет использовать прибор не только для исследования равновесия жидкость—пар, но и как обычный хроматограф. [c.115]

    Метод Гёке основан на использовании хроматографа с дифференциальной газовой схемой, но работает только одна колонка (рис. 2.5,а). Другая линия с помощью металлического крана 5 позволяет создавать давление в сосуде с пробой, превыщающее давление на входе в хроматографическую колонку. Для введения пробы закрывается кран 5, поворачивается на 90° трехходовой кран 6 и открывается запорный кран 4. [c.84]

    В последние годы развивается новый метод исследования гетерогенных систем — термохроматография, представляющая сочетание техники и методов газовой хроматографии с дифференциальным термическим анализом. Сущность метода состоит в том, что при программированном нагреве исследуемого образца и стандарта В потоке контролируемого газа фиксируется температура образца [c.137]

    Приборы и посуда. Газовый хроматограф с дифференциальным пламенноионизационным и электронно-захватным детекторами ( Цвет-3 , Цвет-5 , Цвет-106 и т. п.). Делительная воронка на 1500, 1000 и 500 мл. Стеклянная колонка длиной 20 см и внутренним диаметром 3 см. Колба Бунзена на 500 мл. Воронка Бюхнера диаметром 15 см. Грушевидные колбы на 100 мл. Аппарат для встряхивания. Ротационный испаритель ИР-1. Колбы конические с пришлифованной пробкой на 250 мл. Водяная баня. Контактный термометр на 100°С. Мерные колбы на 5, 10 и 100 мл. Фарфоровая чашка. Песчаная баня. Вакуумный водоструйный насос. Холодильник Либиха. Камера хроматографическая. Микропипетки. Медицинский шприц на 1 мл. Стеклянные пластинки размером 9X12 см. Сито капроновое 100 меш. Пульверизатор стеклянный. [c.183]

    Были определены [1490] основные кинетические параметры процесса дегидрохлорированпя и проведено сопоставление полученного распределения полиеновых звеньев с экспериментальными результатами спектроскопических измерений в видимой и УФ-области. Была предложена кинетическая модель образования полиеновых звеньев в процессе термической деструкции при 190° поливинилхлорида в атмосфере азота. Она включает стадию продолжения путем присоединения ( zipper ) и обрыв цепи за счет образования поперечных связей. Термическая деструкция ПВХ изучалась также в работе [1491]. Для исследования термодеструкции ПВХ применяли [1492] пиролитическую газовую хроматографию и дифференциальную термогравиметрию. [c.325]

    Доказательство строения полимера мож1ю получить, превращая его в одно или несколько веществ известного строения или синтезируя его из других известных соединений. Обычно продукты пиролиза имеют гораздо более простое строение, чем исходная полимерная молекула. При необходимости следует проводить более подробный анализ этих продуктов. Для этого надо использовать физические методы, особенно масс-спектромет-рию, жидкостную и газовую хроматографию и дифференциальный термический анализ. При нагревании некоторых полимеров или смесей полимеров образуются почти исключительно соответствующие мономеры. Их можно отделить от любых примесей и идентифицировать обычными методами, например определяя физические константы или получая их производные. Так, полиметилметакрилат при нагревании до 360° деполимеризуется почти количественно до мономера, который можно легко идентифицировать по его физическим свойствам. Кроме того, при восстановлении мономера цинковой пылью и НС1 с последующим гидролизом образуется изомасляная кислота, которую можно идентифицировать по ее анилиду (т. пл. 105°) или п-бром-фенациловому эфиру (т. пл. 76,8°). Аналогично мономер стирола можно идентифицировать по его дибромиду (т. пл. 74°) или путем превращения в бензойную кислоту (т. пл. 12Г), а кумарон и инден — по их пикратам (т. пл. 102—103 и 98° соответственно) или дибромидам. [c.133]

    Херман и Пост [80] определяли следовые концентрации индола и о-фенилфенола [(1—20)10-2%] в воде путем прямого газохроматографического анализа проб воды. Разделение проводили на колонках с 5% бутандиолсукцината на газохроме р при 170°С. Свиннертон и Линненбом [81] определяли следы газообразных углеводородов С1—С4 на газовом хроматографе, снабженном дифференциальным пламенно-ионизационным детектором. Углеводороды концентрировали вымораживанием в ловушке и затем вводили в хроматограф. Для определения метана использовали колонку с силикагелем. Остальные углеводороды (парафины и олефины Сг—С4) разделяли на колонке с активным оксидом алюминия, содержащим 10% нуйола. Более высокомолекулярные углеводороды разделяли на колонке с 20% 5Р-96 или 5Р-30 на хромосорбе У. Этим методом удавалось определить в водном растворе до 1 ч. газообразных углеводородов на 10 ч. воды. [c.541]

    Хроматограмма, записанная самописцем хроматографа, представляет зависимость сигнала детектора от времени пропускания элюента или от его объема. На рис. I 1.28 показаны зависимости сигналов дифференциального и интегрального детекторов, т. е, дифференциальная и интегральная хроматограммы. Линия / хроматограммы отвечает выходу из колонки чистого газа-носителя (в газовой хроматографии). Пик 2 указывает на присутствие в пробе несорбирующегося компонента. Пики 3 н 4 соответствуют компонентам анализируемой смесн. Пик ограничен фронтом и тылом. По линии фронта наблюдается возрастание концентрации вещества со временем до максимального значения, а по линии тыла оиа со временем уменьшается. Основными параметрами пика являются его высота и ширина. За высоту пика Л принимают расстояние от [c.180]

    Ввиду того что связь между температурой 1 временем В1лражается уравнением (3), А-, и (г) являются функциями времени. Дифференциальное уравнение, аналогичное (1), для газово хроматографи с рограммпрованием температуры в общем виде выражается следующим образом  [c.396]

    Детекторы в газовой хроматографии. В газовой хроматографии практически используют только детекторы дифференциального типа, к-рые подразделяют на концентрационные и потоковые. В концентрационном детекторе значение выходного сигнала Е — 8 -с, где 5 -чувствительность (коэф. пропорциональности), с-мгновенное значение концентрации определяемого в-ва в объеме детектора площадь хроматографич. пика = 5,-д/Р, где -кол-во в-ва, прошедшего через камеру детектора, F-скорость потока газа-носителя. В таких детекторах (площадь пика зависит от скорости потока) концентрацию в-ва рассчитывают по высоте пика. В потоковом детекторе значение выходного сигнала Ej = S J, где Ху-чувствительноснь, у-мгновеиное значение массовой скорости в-ва, поступающего в детектор, у = dq dt (/-время) шющадь пика д. В таких детек- [c.26]

    Мы практически не останавливаемся на комбайнах, объединяющих сверхкритический хроматограф и масс-спектрометр. Отметим лишь, что по объему подвижной фазы (обычно СО2), выходящей их хроматографа, сверхкритическая хроматография занимает промежуточное положение между газовым и жидкостным хроматографами. Поэтому способы объединения сверх-критического хроматографа с масс-спектрометром аналогичны последним двум случаям, т.е. используют молекулярные сепараторы, прямой ввод выхода колонки в ионный источник (капиллярная колонка, хорошая дифференциальная откачка ионного источника), ленточный транспортер и даже термораспыление. [c.46]

    По мере выхода компонентов из колонки они попадают в детектор дифференциального типа, который обычно зависит от изменений ионизации в пламени или изменений термопроводимости. Существует много других типов детекторов некоторые из них пригодны для специфических видов фармацевтического анализа, например электронзахватный детектор особенно ценен для чувствительного обнаружения галогени-рованных соединений. Электрические сигналы от детектора (поступают в усилитель, связанный с подходящим регистрирующим устройством, таким, как ленточный самописец, который регистрирует сигналы в зависимости от времени. Весьма эффективным, но очень дорогим средством обнаружения является применение масс-спектрометра, присоединенного к газовому хроматографу. Это очень чувствительный метод, обеспечивающий точную идентификацию веществ, выходящих из колонки. [c.106]

    Для нахождения коэффициентов активности при бесконечном разбавлении можно использовать дифференциальный эбулиометр, позволяющий измерять температуры очень разбавленных растворов. В приборе, показанном на рис. 12.5, один из эбулиометров содержит чистый растворитель, другой — разбавленный раствор. Этот прибор позволяет измерить разности температур с точностью в пределах 0,001 К и определить воздействие концентраций порядка 0,005 мольных долей. Следует заметить, что для измерения коэффициентов активности растворителей или пар растворителей в жидкостях с большой удельной массой применяются методы газовой хроматографии. Один из приборов данного типа изображен на рис. 12.9. Подробный обзор такого рода экспериментальных методов выполнен Летчером [437], его дополняет работа Экерта и др. [260], опубликованная позднее. [c.545]

    Метод МС-ПФ может использоваться в сочетании с источниками химической ионизации при низком давлении (порядка 10 Па), а также с газовой хроматографией. Сочетание МС-ПФ со способами ионизации при более высоком давлении (химическая ионизация, лазерная десорбция, тлеющий разряд [22]) осуществляется nyieM разделения процессов ионизации и анализа по разным ячейкам, в которых дифференциальной откачкой поддерживается необходимое рабочее давление [33]. По некоторым характеристикам МС-ПФ можно сравнить с МС с двойной фокусировкой. Оба прибора дают возможность быстрого сканирования (< 1 с) и обеспечивают высокое разрешение. [c.858]

    Такие сильно специфические адсорбенты применяются в газовой хроматографии для разделения молекул, близких по размерам, конфигурации и многим физическим свойствам, но различающихся локальным распределением электронной плотности. На сульфате бария, например, хорошо разделяется смесь изомеров ксилола, причем первым выходит п-ксилол, затем л -ксилол, потом о-кси-лол [316] пики практически симметричны. На рис. П,24 показана зависимость дифференциальной теплоты адсорбции насыщенных, ненасыщенных и ароматических углеводородов для малой (нулевой) пробы gv,i от числа атомов углерода в молекуле. Из этого рисунка видно, что значения 5v,i при адсорбции цикленов и ароматических углеводородов на BaS04 значительно выше значений qv i при адсорбции н-алканов и цикланов с тем же количеством атомов углерода в молекуле. Это указывает на сильную специфичность адсорбции цикленов и ароматических углеводородов на таком адсорбенте. Теплоты адсорбции ксилолов заметно различаются между собой и соответствуют последовательности выхода пиков на хроматограмме. [c.67]

    Нами были изучены теплоты и изотермы адсорбции углеводородов при комнатной температуре на полидивинилбензоле (ДВБ), который используется в газовой хроматографии. На рис. 1 приведены опытные дан ные, характеризуюш,ие зависимость дифференциальной теплоты адсорб ции Q нормальных углеводородов от количества адсорбированного газа Если представить те же данные в координатах [(( /Г), к] (рис. 2), то видно что в области низких значений к линейная зависимость не соблюдается Это, как сказано выше, свидетельствует о неоднородности поверхности [c.144]

    Пьезоэлектрический метод использован также в анализаторе для определения отношения водород — углерод в углеводородах [157]. Смеси углеводородов (например, и-бутана, и-пентана, пен-тена-1) разделяют методом газовой хроматографии на колонке со скваленом и окисляют полученные компоненты кислородом в токе гелия при температуре пламени около 650 °С. После сжигания углеводородов поток окисленных продуктов разделяют на две части одну пропускают над кристаллом кварца, колеблюш,имся с частотой 9,000 МГц, который поглощает воду последовательно из бутана, пентана и пентена. Другую часть потока осушают хлористым кальцием и пропускают над вторым кристаллом кварца, колеблющимся с той же частотой и поглощающим диоксид углерода. Частота колебаний каждого кристалла кварца уменьшается пропорционально количеству поглощенных воды или диоксида углерода каждая из этих двух частот накладывается порознь на фиксированную частоту эталонного генератора — 9,001 МГц, в результате чего образуются три различных дифференциальных частоты. Полученные данные непрерывно регистрируются, и расчет соотношений водород — углерод производится автоматически. В качестве материалов для покрытия кристалла, сорбирующего воду, Сэнфорд и сотр. [157] использовали силикагель, оксид алюминия, природные и синтетические смолы для сорбции диоксида углерода эти авторы применяли полярные вещества, например полиэтиленгликоль. [c.587]

    В основе количественного анализа газовой смеси по хроматографическим кривым, получаемым при помощи дифференциальных детекторов, лежит определение основных параметров хроматографического пика высоты пика Л, ширины пика М, площади пика Q времени удерживания удерживаемого объема Ууд или соответствующего ему на хроматограмме отрезка I. Однако точность анализа определяется точностью измерения определяющего параметра только в случае идеальной регистрации хроматограммы особенно это имеет место при использовании в качестве определяющего параметра площади пика Q. Для расчета реальных хроматограмм наиболее целесообразно использование произведения, высоты пика на удерживаемый объем (Л-Куд) или отрезок /(Л-/). Оирина пика при отсутствии перегрузки колонки постоянна, а высота пика пропорциональна количеству определяемого компонента. Существенное влияние - на точность проведения количественного хроматографического анализа газов оказывает перекрытие и размытие хроматографических пиков, а также скорость подачи газа-носителя и количество вводимой анализируемой пробы, перегрузка и температура хроматографической колонки, чувствительность детектора и регистрирующего устройства. В связи с этим при конструировании хроматографов предъявляются весьма жесткие требования к воспроизводимости работы всей хроматографической установки, а при проведении анализа строгое выполнение этих требований. [c.326]


Библиография для Хроматография газовая дифференциальная: [c.234]    [c.171]    [c.27]   
Смотреть страницы где упоминается термин Хроматография газовая дифференциальная: [c.127]    [c.177]    [c.58]    [c.354]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2024 chem21.info Реклама на сайте