Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выщелачивание кальция

    Исследовано выщелачивание матричных элементов из СаТЮз и установлено, что скорость выщелачивания кальция близка к скорости выщелачивания стронция, тогда как скорость выщелачивания титана примерно на порядок меньше. Это означает, что при длительном выщелачивании будет происходить изменение природы поверхностного слоя за счет постепенного уменьшения концентрации в нем кальция, вследствие чего он будет постепенно превращаться в слой гидратированного диоксида титана. Диффузия через этот слой и будет определять скорость выщелачивания радионуклидов. [c.80]


    Это происходит при движении вытесняющих вод с избыточным содержанием НСО , но первоначально недонасыщенных карбонатными солями из-за недостатка ионов кальция. Такая вода обладает способностью растворять карбонатные составляющие горной породы. Несмотря на то, что в нагнетательные скважины одного из объектов подавали пресную воду с содержанием ионов кальция не более 1 мг-экв/л, а концентрация этих ионов в пластовых погребенных водах колебалась от 6 до 20 мг-экв/л, в попутной воде в момент обводнения добывающих скважин содержание ионов Са достигало 90 мг-экв/л. Процессы выщелачивания создают, таким образом, условия для выпадения осадков солей. [c.233]

    В основе метода спекания лежит процесс образования алюминатов натрия (и калия в случае нефелинов) в результате взаимодействия при высокой температуре оксида алюминия руды с карбонатами металлов, с последующим выщелачиванием алюминатов водой и разложением их оксидом углерода (IV). Природа карбоната зависит от содержания в руде натриевого компонента для спекания бокситов используют смесь карбонатов натрия и кальция, а для спекания нефелинов, содержащих в своем составе оксиды натрия и калия, только оксид кальция. Карбонат кальция при спекании бокситов связывает присутствующий в них оксид кремния и позволяет существенно снизить расход дорогого карбоната натрия. [c.26]

    Если загрязненную почву или маслянистые отходы смешать с обычной необработанной окисью кальция, то при наличии воды последняя немедленно вступит в реакцию с окисью кальция и равномерная дисперсия и связывание загрязняющего вещества внутри продукта реакции будут невозможны. В лучшем случае результатом будет гетерогенный твердый остаток или, особенно при наличии маслянистых веществ, пастообразный продукт, а исходный загрязнитель останется восприимчивым к выщелачиванию. [c.245]

    Сущность способа заключается в спекании бокситов с содой и известняком в трубчатых вращающихся печах. Полученный спек охлаждают и выщелачивают промывными водами. В раствор переходит алюминат натрия, в осадке остается кремнезем в виде двукальциевого силиката, гидроокись железа и титанат кальция. Небольшая часть кремнезема, образующая при спекании растворимый силикат натрия, который не отделяется после выщелачивания и осаждения двукальциевого силиката, удаляется уже из раствора с помощью известкового молока при нагревании в автоклавах. [c.483]


    В процессе выщелачивания меди из руды в раствор переходят также окислы других металлов. Большое количество сульфатов железа, алюминия, магния, кальция вызывает потери серной кислоты и преждевременный вывод раствора в отвал после пред- [c.221]

    Разложение составляющих цементного камня водой, а также растворение и вымывание (выщелачивание) образующейся при этом или уже ранее имевшейся гидроокиси кальция. [c.187]

    Коррозия выщелачивания представляет собой постепенное растворение и вымывание извести из бетона. Такой вид коррозии наблюдается при эксплуатации бетона в условиях фильтрации воды под давлением или просто омывания водой. Это явление обусловлено некоторой растворимостью основных компонентов цементного камня —гидросиликатов, алюминатов, ферритов, сульфоалюминатов и прежде всего гидроксида кальция. Так, пресная вода, проникая внутрь тела бетона по трещинам, порам, капиллярам, растворяет гидроксид кальция (выщелачивает) и выносит его. Поскольку при этом нарушается химическое равновесие между поровой жидкостью и составляющими цементного камня, последние подвергаются ступенчатому гидролизу, что и ведет к постепенному ослаблению и разрушению бетона. [c.368]

    В цементном камне, как известно, образуется значительное количество гидрата окиси кальция, растворимость которого даже при нормальных температурах достигает 1,3 г/л. Поэтому при действии подземных вод на цементный камень Са (0Н)2 уносится водой, что сопровождается разрушением структуры и уменьшением плотности камня. По данным В. М. Москвина, при выщелачивании 15—30% гидрата окиси кальция прочность цементного камня снижается на 40—50%. [c.224]

    Чистую выпаренную соль получают на выпарных установках 8 из очищенного от кальция, магния и других примесей раствора хлорида натрия. Обычно используют содово-каустический способ очистки 7, аналогичный очистке рассола для диафрагменного электролиза. Раствор, поступающий на очистку, получают либо методом подземного выщелачивания, либо растворением привозной соли. [c.90]

    Для выщелачивания огарка используют отработанный кислый электролит (замкнутый процесс). Эта операция позволяет разделить компоненты огарка между раствором и остатком от выщелачивания. В зависимости от концентрации кислоты и температуры выщелачивания, а также от свойств отдельных оксидов распределение каждого из компонентов между раствором и остатком может быть различным. В остатке от выщелачивания находится обычно основная часть свинца, кальция, магния, алюминия в виде сульфатов и оксидов, а также диоксид кремния и феррит цинка (при содержании кислоты в отработанном электролите до 100 г/л), половина всей меди, золото и серебро. [c.385]

    Повышение работоспособности промысловых трубопроводов является актуальной задачей для нефтегазодобывающей, а также химической промышленности в связи с растущими темпами развития трубопроводной транспортировки горного сырья. Особую актуальность приобретает эксплуатационная надежность трубопроводов в случае высокоминерализованных водных сред (хлориды натрия, кальция, магния и др.), транспортируемых при перекачке обводненной нефти, соленой пластовой воды в технологии вторичных методов добычи нефти, а также при добыче солей методом подземного выщелачивания. При остановке нефтепровода, а также при использовании метода внутритрубной деэмульсации происходит расслоение воды и нефти, которое в определенных условиях приводит к скоплению воды в пониженных участках трассы. Скопления водной фазы могут быть также результатом гидравлических испытаний на завершающей стадии строительства трубопроводов. [c.235]

    Такой характер глобального цикла отличает не только фосфор, но и другие элементы, поступающие во внешние геосферы не в результате дегазации земных недр, а при выщелачивании пород гранитного слоя земной коры. К их числу относятся такие жизненно важные элементы, как кремний, кальций, калий и натрий. Атмосферный перенос в их перемещении играет подчиненную роль, а основная миграция происходит в системе суша -океаны (В. В. Добровольский, 1998). В океанах эти элементы накапливаются в донных отложениях и вновь включаются в активную миграцию после прохождения осадками стадий диагенеза, метаморфизма и выноса на поверхность (рис. 2.8). [c.68]

    Кислотные дожди влияют на структуру и строение ночв, приводят к гибели растений (главным образом хвойных деревьев). При закислении ночв происходит выщелачивание кальция, магния и калия, возрастает подвижность токсичных металлов, меняется состав почвенных микроорганизмов. Кислотные дожди отрицательно влияют и на наземные экосистемы. Песомненно, что они - одна из причин деградации лесов. [c.33]

    Бор находится в природе в виде кальциевых и магниевых солей полиборных кислот тСаО П.В2О3 дН20 (кларк 3 10 %). После выщелачивания кальция и других ионов соляной кислотой оставшийся кек (нерастворимый осадок В2О3) подвергают магнийтермическому восстановлению  [c.143]


    Для выделения °5г из сбросных растворов целесообразно проводить сокристаллизацию с азотнокислым кальцием, отделение от которого может быть проведено дробной кристаллизацией, выщелачиванием кальция из сухих азотнокислых солей смесью спирта с ацетоном, экстракцией или хроматографически. В первом способе получается хорошее отделение от церия, но сохраняется примесь бария, остальные способы дают возможность более полного отделения, но неудобны в производстве вследствие радиационного разложения катионита и органического растворителя. [c.252]

    В платиновую чашку емкостью 300 мл помещают 200 мл анализируемой воды и выпаривают досуха на электроплитке (выпаривание проводят в боксе электроплитка должна быть полностью металлической без открытой поверхности керамики). После охлаждения до комнатной температуры содержимое чашки выщелачивают 2 мл 0,1 н. соляной кислоты, добавляют сюда же 8 мл очищенной от кальция воды, 1 мл ацетона, 0,5 мл 0,5 н. едкого натра и 0,5 мл 0,02%-ного водного раствора кальциона ИРЕА. Раствор переливают в колориметрическую пробирку емкостью 20—25 мл. Окраску полученного раствора сравнивают с окраской эталона, содержащего I мкг кальция. Эталонный раствор готовят в колориметрической пробирке одновременно с определением, начиная с момента выщелачивания кальция. Сравнение окрасок проводят в проходящем свете по оси пробирок. Если розовая окраска испытуемого раствора менее интенсивна, чем окраска эталона раствора, то это означает, что в исследуемой воде содержание кальция составляет менее 5.10 %, Можно заканчивать определение также при помощи глиоксаль-бис-(2-оксианила), но, как показали опыты, визуально лучше сравнивать окраски с кальционом. Инструментальное окончание при содержании I мкг кальция нечувствительно [c.254]

    Малые дозы извести требуется вносить чаще, в то время как полную дозу можно применять один раз в две-три ротации севооборота. Необходимость повторного известкования вызывается выщелачиванием кальция из почвы. До тех пор пока в почве есть известь, подкисления не наступает, но растворение и выщелачивание ее ведет к подкислению почвенного раствора, так как ионы водорода вытесняют катионы кальция и магния из коллоидов почвы, обладаюпщх обменной поглотительной способностью. [c.211]

    Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы [c.140]

    D R - дисперсия в результате химической реакции — это метод, который позволяет связывать загрязненный материал и превращать его в стойкое к выщелачиванию твердое вещество с высокими геомеханическими характеристиками. В качестве главного реагента в наиболее частых случаях используют специально обработанную окись кальция ("негашеная известь"). При гашении извести в процессе гидратации освобождается энергия в виде тепла и получается гидроокись кальция ("гашеная известь")  [c.245]

    При выщелачивании также необходимо поддерживать определенные условия. Помимо перечисленных выше соединений при спекании образуются и другие нерастворимые вещества, которые связывают АЬОз, например, в виде алюмината калЕЩия и др. Если спек растворять в воде, эти нерастворимые соединения подвергаются гидролизу с образованием А1(0Н)з, который попадает в осадок и теряется со шламом. Если же спек растворять в содовом растворе, то кальций реагирует с содой с образованием растворимого алюмината натрия и нерастворимого СаСОз. Поэтому для максимального перевода алюминия в раствор и связывания кальция в карбонат необходимо на каждый 1 моль СаО в спеке вводить в раствор не менее 1 моль ЫагСОз. [c.485]

    Для устойчивости цементных сооружений громадное значение имеет наличие в воде гидрокарбонатов, так как между карбонатной пленкой массива СаСОз и гидрокарбонатом Са(НСОз)2 воды устанавливается определенное равновесие, которое удерживает пленку от растворения. Отсутствие в воде гидрокарбонатов вызывает ослабление вяжущих свойств цемента, при этом протекает процесс размягчения цементного раствора за счет выщелачивания иона кальция. [c.180]

    Сульфатизируют концентрат (3-сподумена во вращающейся печи (d = 0,9 м, I = 7,9 м, производительность 2,7 т/ч), которая обогревается газом, подаваемым навстречу движению концентрата. На выходе из печи температура сульфатизированного материала 250°. Его обработку водой (выщелачивание) проводят в реакторе, непрерывно перемешивая сжатым воздухом. В реакторе же нейтрализуют избыток H2SO4 карбонатом кальция до pH 6,0—6,5. После этого масса поступает на барабанный вакуум-фильтр, на котором нерастворимый остаток промывают водой (промывные воды используют для выщелачивания новой порции спека). При влажности 30% нерастворимый остаток выводят из процесса как отвальный продукт. Потери вместе с ним водоизвлекаемого лития составляют 1 % содержания элемента в концентрате, а небольшие количества рубидия и цезия, которые могут быть в сподуменовом концентрате, теряются полностью [128]. [c.40]

    В настоящее время такая переработка осуществлена на заводе в Сан-Антонио (США, штат Техас) сырье— африканский лепидолит, содержащий 3,5— 4% Li20 [1371. Лепидолит и известняк в весовом соотношении 1 3 совместно измельчают в шаровой мельнице мокрого помола до 0,07 мм (200 меш). Слив мельницы с 15% твердого вещества концентрируют в сгустителе до содержания 65% твердого вещества (большой объем перерабатываемого материала неизбежно требует очень емкой аппаратуры например, диаметр сгустителя 30 м. Сгущенный шлам подают на спекание в трубчатую печь d = 3,6 и, I = 99 м), работающую на газообразном топливе. Здесь шлам спекают 4 ч. Спек, имеющий температуру 860° (на выходе из печи), гасится в потоке концентрированного щелока из системы противоточного выщелачивания. Далее смесь измельчают в шаровой мельнице до минус 0,07 мм и направляют на дальнейшее выщелачивание при 100° в две стадии. После этого пульпа проходит через систему противоточных промывных сгустителей, в которых спек отмывается. Слив из первого сгустителя обрабатывают известковым молоком для удаления алюминия, осаждающегося в виде гидратированного алюмината кальция, который отфильтровывают. Верхний слив второго сгустителя поступает на гашение спека. Отфильтрованный и осветленный раствор, содержащий гидроокиси всех щелочных элементов, упаривают под вакуумом в трехкорпусном выпарном аппарате. В корпусах поддерживают температуру 120, 90 и 60° соответственно. Кристаллы Li0H-H20, выделяющиеся в последнем корпусе, центрифугируют и для очистки перекристаллизовывают, проводя промежуточную упарку под вакуумом. [c.47]

    При спекании лепидолита с известью и гипсом или СаО и СаС1г рубидий и цезий также оказываются после выщелачивания спеков в растворе. По удалении кальция (особенно в последнем случае) выделить их нетрудно. При спекании лепидолита с известняком рубидий [c.126]

    Для отделения скандия от кальция и магния можно использовать не только различие в pH осаждения их гидроокисей (табл. 7) [13]. но и выщелачивание гидроокисей 20%-ным раствором (МН гСОз, что дает возможность извлекать в раствор и эффективно отделять 8с как от больших, так и от малых количеств примеси Са и Mg [6]. [c.19]

    При переработке таких солянокислых растворов, содержащих значительное количество Ре и Мп, рекомендуется осаждать скандий в виде малорастворимого фторида, вводя при pH 2 кремнефторид натрия [51]. Осадок5сРз, содержащий также Са, А1, РЗЭ, Т], Мп, обрабатывают серной кислотой, а затем проводят водное выщелачивание. Часть кальция при этом остается нерастворимым в виде Са504. Для отделения от большого количества алюминия и остатков кальция осаждают гидроокиси, вводя ЫаОН при pH 10. Указанные примеси в этих условиях остаются в растворе. В осадок вместе с гидроокисью скандия выделяются Т1, Мп и другие примеси. Для очистки от Т1, Мп, остатков А1 осадок гидроокисей растворяют в соляной кислоте и осаждают скандий щавелевой кислотой. Прокаливая при 600°, оксалаты переводят в окиси. После растворения в соляной кислоте, осаждения гидроокиси и прокаливания ее получают концентрат, содержащий 30% Зс Оз и 70% Ьп Оз с общим извлечением из исходного шлака 76%. Схема процесса приведена на рис. 12. [c.39]

    Разложение спека. Разлагают спек соляной или серной кислотой. При обработке соляной кислотой в раствор в первую очередь переходят a l2 и избыточная СаО, затем разлагаются силикаты кальция и в последнюю очередь цирконат и цирконосиликат кальция. Пока в спеке остается свободная или связанная СаО, цирконий в раствор не переходит. Для облегчения отделения кремниевой кислоты выщелачивание проводят в две стадии. Сначала спек обрабатывают на холоду разбавленной (5%) соляной кислотой. Количество ее берется из расчета нейтрализации избыточной СаО и разложения силикатов кальция на - 70%. После отстаивания и декантации раствора твердый остаток обрабатывают концентрированной (25—30%) кислотой при 70—80° до полного его разложения. В раствор добавляют столярный клей после охлаждения и отстаивания декантируют. [c.319]

    Выделение циркония из растворов. Растворы, полученные при выщелачивании плавов или спеков, содержат, кроме циркония, натрий или кальций, примеси — железо, титан, алюминий, кремний идр. Их отделяют несколькими методами, общее для которых — выделение циркония в осадок при соблюдении условий, препятствующих осаждению примесей 1) кристаллизация оксихлорида, 2) осаждение основных сульфатов, 3) кристаллизация сульфата ( цирконилсерной кислоты ), 4) кристаллизация комплексных фторидов. [c.321]

    Результаты анализа ряда навесок показали, что абсолютное количество кальция не зависит от массы исходной пробы и составляет примерно 0,3 мг. Последовательное рассмотрение всех этапов анализа позволило установить, что кальций по ходу анализа привносится частично за счет выщелачивания из стекла посуды при кипячении навески в стакане с азотной кислотой, а частично из материала фильтров в ходе двухкратного осаждения и промывания осадка оксихи-нолинатов Са и Mg на фильтрах. Замена посуды, используемой для разложения минерала, на кварцевую и предварительная промывка фильтров теплой 2М соляной кислотой привели к исключению систематической погрешности привнесения кальция по ходу анализа. [c.58]

    Результаты исследований обогатимости шламов станции нейтрализации Левинхинского рудника, содержащих, % 1,0-1,3 Си 2,1-2,4 2п 3-5 Ре, показали, что наиболее приемлемой технологией переработки подобного типа отходов является сернокислотное выщелачивание с последующей цементацией меди и осаждением цинка в ввде нерастворимого соединения, например сульфвда. Однако высокая массовая доля в шламах карбонатов кальция (до 35 %) приводит к значительным удельным расходам серной кислоты (30—40 кг меди), что не позволяет рентабельно их перерабатьшать [102]. [c.86]

    Воды, используемые в системах ППД, обладают в различной степени агрессивностью к бетону, металлам и другим материалам, что существенно влияет на надежность работы нефтепромыслового оборудования. По отношению к бетону агрессивность воды подразделяется на углекислотную, выщелачивающую, сульфатную, общекислотную и др. Углекислотная агрессивность воды выражается в разрушении бетона в результате растворения карбоната кальция под действием угольной кислоты. Максимально допустимое содержание СО2 в воде в зависимости от конкретных условий составляет 3,0—8,3 мг/л. Выщелачивание происходит вследствие растворения в содержащейся в бетоне гидроокиси кальция. Вода обладает выщелачивающей агрессивностью при содержании более 0,4 мг-экв/л НСО3. При содержании в воде хлоридов более 40 мг/л бетон также разрушается в результате выщелачивания. Сульфатная агрессивность воды наблюдается при содержании ионов 80" 250 мг/л и более. При взаимодействии таких вод с бетоном образуются кристаллы гипса, солей и других соединений, что приводит к вспучиванию и разрушению бетона. Общекислотная агрессивность зависит от pH воды. Вода считается агрессивной к бетону при pH = 7. [c.367]

    Kohn-Abrest, Ann. Fals., 13, 482 [1920]). Навеску испытуемого вещества, около 50 г, размалывают и смешивают с десятью объемами воды в колбе, емкости которой в четыре или пять раз больше объ ема смеси. Оставляют стоять четыре часа при 37 — 40° или 24 часа при комнатной температуре, охлаждают и подкисляют 2 см3 концентрированной соляной кислотой на каждые 100 см5 жидкости. Колбу затем соединяют с холодильником, другой конец которого погружен в небольшое количество воды, и отгоняют на бане с хлористым кальцием до тех пор, пока не от-гонится четвертая часть смеси. К слегка кислому дестиллату прибавляется твердый бикарбонат натрия, после чего раствор титруется титрованным раствором иода в йодистом калии. Остаток от перегонки обрабатывается концентрированной соляной кислотой, прибавляемый объем которой составляет а/10 первоначального объема жидкости, и отгонка продолжаете до тех пор, пока 3/5 первоначального объема не будут перегнаны. Второй дестиллат титруется, как было указано выше. Он дает синильную кислоту, которая не была освобождена выщелачиванием в холодной воде. [c.24]

    Находящийся в тамп0нал(н0м цементе трехкальциевый силикат (ЗСаО S102), гидролизуясь, выделяет в свободном состоянии гидроокись кальция Са(0Н)2, частично растворящуюся и легко вымывающуюся водой. Процесс выщелачивания придает цементному камню пористость и тем самым ослабляет его прочность. [c.350]

    Оксидные руды подвергают восстановительному обжигу.. В качестве восстановителей могут применяться углерод, мазут и газы. В Советском Союзе имеется опыт восстановления пер-оксидных марганцевых руд способом мазутотермии с использованием тепла экзотермической реакции, а также восстановление рядовых оксидных руд в вихревых печах природным газом или в цилиндрических вращающихся печах азотоводородной, смесью. Выщелачивание по принятой в настоящее время замкнутой схеме проводят в кислом отработанном анолите, содержащем около 50 г/л серной кислоты, с доведением pH пульпы до 4,5—5. При выщелачивании продукта обжига в раствор переходит не только марганец, но и определенные количества солей железа, никеля, кобальта, кальция, магния, кремнекис-лоты и др. [c.398]

    При выщелачивании также необходимо поддерживать определенные условия. Помимо перечисленных выше соединений при спекании образуются и другие нерастворимые вещества, которые связывают AI2O3, например, в виде алюмината кальция и др. Если спек растворять в воде, эти нерастворимые соединения будут гидролизоваться с образованием А1(0Н)з, который [c.459]

    Нефтевмещающие породы представлены известняками полимиктовосгустковыми, органогенными и органогенно-детритовыми. Цементом служит тонко и мелкозернистый кальцит, тип цемента - поровый, общее количество цемента составляет 15-20%. Преобладают первичные поры, но присутствуют вторичные поры выщелачивания, наблюдаются шoгoчи лeнныe микротрещины. Тип коллектора - трещиннопоровый. Нефтенасыщенные толщины продуктивного пласта колеблются от 4,4 до 42,4 м, составляя в среднем 23,2 м. [c.288]


Смотреть страницы где упоминается термин Выщелачивание кальция: [c.297]    [c.246]    [c.271]    [c.225]    [c.226]    [c.43]    [c.44]    [c.60]    [c.124]    [c.457]    [c.38]    [c.37]    [c.225]    [c.349]   
Физическая химия силикатов (1962) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Выщелачивание руд



© 2025 chem21.info Реклама на сайте