Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Миграция активных центров

    ВОЗМОЖНЫ лишь при миграции реакционноспособных частиц. Для объяснения ряда других фактов необходимо допуш,ение о возможности миграции активных центров или переносе энергии было высказано предположение [c.169]

    В последнее время все большее внимание исследователей привлекают процессы так называемой матричной полимеризации, характеризующейся анизотропией процесса роста макромолекул, протекающего преимущественно вдоль матричной полимерной цепи. Разумеется, термин матричная полимеризация введен только для краткости и удобства изложения. В рассмотренных случаях роста полимерных цепей на матричных макромолекулах вероятность миграции активного центра в изотропный раствор все еще очень высока, что, по-видимому, объясняется недостаточно высокой степенью комплементарности макромолекул и кооперативностью систем в целом. Тем не менее в этом направлении уже достигнут некоторый косвенный успех, позволяющий получать полимерные материалы определенной морфологии с ценным комплексом свойств. [c.122]


    Бимолекулярные реакции в конденсированной фазе в соответствии с этой схемой протекают через две мономолекулярные стадии. Первая стадия заключается в миграции активного центра и характеризуется константой km, вторая стадия представляет реакцию (А---В)— АВ в клетке. Наиболее характерная особенность этой стадии заключается в том, что время жизни комплекса (А В) всегда много больше времени двойных столкновений в газовой фазе ( 10 13 с) и, по-видимому, достаточно велико для того, чтобы комплекс (А---В) каждый раз приходил в равновесие с окружающей матрицей. Пространственное перемещение активных центров в конденсированных средах может происходить как в результате обычной диффузии частиц, являющихся носителями этих активных центров, так и протекания процессов бездиффузионного эстафетного перемещения зарядов или свободных валентностей. Экспериментальное доказательство осуществления процессов второго типа явилось бы исключительно важным научным открытием. В настоящее время, к сожалению, трудно назвать системы, о которых с достаточно большой вероятностью можно было бы сказать, что в них имеет место процесс бездиффузионной миграции активных центров. [c.171]

    Радиационно-химическое сшивание полипропилена, у которого миграция активных центров из-за особенностей строения макроцепи затруднена [130], как известно [31, с. 307], протекает с весьма низким выходом гель-фракции. [c.133]

    Приведенные данные не только подтверждают факт миграции активного центра от атомов хрома и кальция к никелю, но они такн е указывают на л-аллильную природу активного центра при полимеризации диенов под влиянием высших окислов хрома. [c.102]

    МИГРАЦИЯ АКТИВНЫХ ЦЕНТРОВ [c.89]

    Процессы миграции активных центров в твердых полимерах (и, в частности, миграции свободной валентности) имеют фундаментальное значение для старения и стабилизации полимерных материалов. Они обеспечивают перенос активных центров и, следовательно, развитие процессов деструкции по всему объему материала. Скорость переноса определяет общую скорость деструктивных процессов и их равномерность по объему. При малых скоростях переноса процессы оказываются локализованными в определенных микроскопических участках полимерного тела — в микрореакторах . Снособность полимерного материала сохранять свои исходные структурно-физические и эксплуатационные свойства зависит в первую очередь от того, развиваются ли деструктивные процессы равномерно по всему объему, или они локализованы в микрореакторах . Наконец, зная физические и кинетические законы миграции, можно сформулировать основные принципы и способы перехвата активных центров, принципы их дезактивации и обезвреживания, или, другими словами, принципы стабилизации. [c.89]


    Перенос валентности низкомолекулярными радикалами является эффективным механизмом миграции активных центров в твердых полимерах. [c.105]

    Процессы миграции активных центров (и в первую очередь миграции свободной валентности) в твердых полимерах имеют важнейшее значение для старения и стабилизации полимерных материалов. Они обеспечивают перенос активных центров из одной части полимерного материала в другую и, следовательно, обеспечивают развитие процессов молекулярного разрушения но всему объему материала. Скорость переноса определяет общую скорость разрушения и равномерность его по объему. При малой скорости миграции процессы локализованы в микроскопических участках полимерного тела — в микрореакторах . [c.354]

    Во-вторых, выбор между низкомолекулярными и высокомолекулярными стабилизаторами определяется полностью механизмами миграции активных центров (см. гл. IV, VI). Зная условия, в которых преобладает тот или другой механизм, можно предсказать, какой из стабилизаторов — низко- или высокомолекулярный — будет обладать более сильным защитным действием. [c.354]

    Существенное значение имеет также явление катализа миграции активных центров низкомолекулярными веществами (см. [c.354]

    ЛО п атомов в активном центре, число 2 областей миграции и абсолютную производительность активного центра для данного процесса. Этим способом было изучено большое число различных процессов, протекающих на адсорбционных катализаторах. Данные для некоторых из них приведены в таблице. [c.359]

    На основании приведенных закономерностей можно предположить, что каталитические активные центры, ответственные за гидридный перенос, а, возможно, и за миграцию метильных групп, включают одну сульфокислотную группу и две молекулы ВРз. [c.80]

    Если предположить, что катионы РЗЭ + являются активными центрами алкилирования или источником протонов, можно объяснить разницу в активности указанных образцов неодинаковой локализацией катионов a + и РЗЭ +. Последние размещаются в основном в центрах 5ц цеолитного каркаса, доступных для реагирующих молекул, но под действием высоких температур (при регенерации) мигрируют в недоступную для углеводородов область ( 1) [4]. Этим объясняется падение активности образцов с высоким содержанием катионов РЗЭ + после регенерации. Катионы Са +, локализуясь в центрах 5ь мешают миграции туда катионов РЗЭ +, тем самым увеличивая стабильность катализаторов. Указанные представления подтверждаются прямой корреляцией между теплотой адсорбции бензола и кислотностью цеолитов и их активностью в алкилировании изопарафинов этиленом [5]. [c.83]

    Все эти явления указывают, что при каталитических реакциях происходит диспергирование поверхности причина последнего долго не находила объяснений. Теперь, однако, доказано, что молекулы в верхнем адсорбированном слое не фиксированы неподвижно, а могут перемещаться по поверхности в двух направлениях. Благодаря хемосорбции молекулы адсорбированного вещества при таких миграциях могут увлекать с собой атомы адсорбента и перемещать его в другие точки поверхности. Было доказано, что эти миграции направлены к активным центрам, т. е. к местам с большей ненасы-щенностью. В активных центрах происходит поверхностная реакция, в результате которой молекулы реагирующего вещества десорбируются, а атомы катализатора оказываются перенесенными в другое место поверхности. Вследствие таких переносов и разрыхления масса катализатора постепенно теряется. [c.54]

    Предложенная схема предполагает независимое существование двух родов активных центров и миграцию реагирующего вещества от центра к центру. Опытами с мечеными атомами [257] показана возможность непосредственного превращения бензола в метилциклопентан (т. е. и гидрирования, и изомеризации) в присутствии сернистого вольфрама без образования циклогексана и десорбции его с катализатора, что противоречит представлениям о миграции превращающегося вещества. [c.239]

    При объяснении эффектов падения дифференциальных теплот адсорбции с ростом степени заполнения вполне допустимо, что на неоднородной поверхности вначале заполняются наиболее активные центры. Если даже вначале возникает случайное заполнение, впоследствии происходит распространение адсорбированного слоя к наиболее активным центрам в результате поверхностной миграции адсорбированных частиц. На наиболее активных центрах адсорбция происходит с максимальным выделением тепла и минимальной энергией активации. С ростом степени заполнения в процесс вовлекаются менее активные центры. В результате теплота адсорбции непрерывно падает, а энергия активации увеличивается. [c.47]

    Таким образом, для определения числа атомов в активном центре п п величины Р нужно знать только положение максимумов общей и удельной активности. Так же определяется число областей миграции 2о, а затем рассчитывается активность отдельного ансамбля. Зная удельную поверхность носителя 5, можно определить и площадь области миграции Д или Р. [c.109]


    За исключением сравнительно редких случаев, опыт дает для п небольшие целые числа (1, 2, 3) и, следовательно, говорит в пользу активности некоторых определенных и притом небольших атомных группировок — ансамблей, — запертых в областях миграции Носителя, как в потенциальных ямах. Логарифмирование уравнения (7) приводит к линейной зависимости от а, если только число п действительно отвечает составу активного центра [c.10]

    Вопрос о механизме миграции энергии пока еще слабо выяснен, может быть, за исключением, полупроводниковых тел. Мы точ Ьо не знаем, как мигрирует энергия по большим молекулам, в частности по макромолекулам белка, так же как не ясны формы ее миграции по металлическим поликристаллам. Здесь мы неизбежно вступаем в область лишь более или менее достоверных догадок. В порядке рабочей гипотезы можно думать, что миграция энергии происходит по экситонному. типу, т. е. путем эстафетной передачи зонно-электронного возбужденного состояния по кристаллу от одного активного центра к другому. Принять передачу энергии через колебания самой решетки труднее, так как они слишком легко рассеивал - бы энергию в окружающую среду. Примером электронной активации центра может служить возбуждение палладия, пере водящее его из структуры 4(8 р с1 °). с замкнутой 18-электронной оболочкой в структуру 5 с затратой энергии 0,8 эв (т. е. 18 ккал на атом) и с приобретением двух неспаренных электронов, т. е. двух химических валентностей в этом виде палладий обычно проявляет себя как элемент и как катализатор. [c.58]

    Значительную степень с]дивания, достигаемую в результате подобного процесса, можно объяснить, только привлекая уже упоминавшийся в связи с радиационнохимическим сшиванием механизм миграции активного центра, повы1паюш,ий скорость реакций рекомбинации. Одновременно со сшиваниел происходит и деструкция полимера. Особенно значительна деструкция при сшивании разветвленных полиолефинов полиизобутилена, полипропилена, сополимеров этилена с пропиленом. [c.123]

    При облучении полиэтилена в присутствии тетрахлорэтилена основным продуктом его фотолиза в полимере является трихлорэтилен. Как видно из рис. 52, в ИК-спектре пленки, содержащей тетрахлорэтилен, после облучения появляются новые полосы поглощения, соответствующие полосам поглощения трихлорэтилена. В этом процессе наряду с поперечными связями образуется значительное количество ненасыщенных групп т/)анс-виниленового типа [126]. Эти группы полностью исчезают при взаимодействии с треххлористым фосфором [131], сорбирующимся в аморфных областях [128], следовательно, гранс-виниле-новые группировки также располагаются лишь в этих областях. Такой результат указывает на незначительную роль актов миграции в рассматриваемом процессе фотохимического сшивания. Действительно, миграция активных центров макромолекулы вдоль цепи и от одной цепи к другой приводила бы к образованию транс-виниленовых групп как в аморфных, так и в кристаллических областях. [c.132]

    С. Л. Киперманом и сотр. [30, 31] предложена кинетическая модель гидрогенолиза я-пентана в присутствии промышленного алюмоплатинового катализатора (атмосферное давление, 420—480 °С). Основной реакцией в изученных условиях является изомеризация н-пентана в изопентан. Предполагают, что гидрогенолиз и дегидрирование протекают на Р1-центрах катализатора, а изомеризация осуществляется путем миграции фрагментов СбНц с активных центров металла на пограничные центры носителя. Медленной стадией в реакции гидрогенолиза является симметричный и асимметричный разрывы С—С-связей поверхностных промежуточных фрагментов состава С5Н11, медленной стадией изомеризации — присоединение одного из атомов водорода к диссоциативно адсорбированному пентану. [c.94]

    Решив систему двух уравнений (XIII, 38) и (XIII, 40) с двумя неизвестными п и 2о, получим условия, позволяющие из опытных данных определять число п атомов в активном центре и число 2о областей миграции на поверхности носителя  [c.356]

    Эта схема предполагает наличие в катализаторе платформинга двух типов активных центров [дегидрирования Д и изомеризации — И (кислотный)] и миграцию реагирующего метилциклопентана от центра Д к центру И и снова к центру Д. Иногда эту схему распространяют на все катализаторы, обладающие свойствами ускорять как реакции гидрирования и дегидрирования, так и реакции изомеризации (см., например, обзор Однако наличие двух родов активной поверхности в одном катализаторе вряд ли является распространенным явлением и такие представления подвергались справедливой критике. Тем более невероятно наличие двух центров в катализаторе без носителя (ХУЗд). Схема на стр. 235 предполагает, что все превращения, отмеченные в скобках, идут на одной и той же активной поверхности катализатора. Это доказывается экспериментально получением метилциклопентана из бензола, минуя промежуточное образование циклогексана и десорбцию с этой активной поверхности. [c.236]

    В отношении дисперсности коксовых отложений первоначально предполагали, что при малых степенях закоксованности существует мо-нослойное покрытие каталитической поверхности коксом [30, 31]. Однако в дальнейшем было установлено, что дисперсность в значительной степени определяется размещением и доступностью активных центров, на которых образуется кокс, его способностью к миграции по поверхности [6, 17]. [c.10]

    Однако такая гипотеза имеет много слабых мест, и в настоящее время для объяснения этого явления привлекают процесс диффузии атомов из объема к поверхности реагирования [72]. С повышением температуры, растет число атомов углерода, диффундирующих к поверхности из объема под влиянием градиента концентрации. При больших концентрациях окислителя эти атомы успевают прореагировать до того, как займут место удалившихся атомов углерода. Если атом, достигший поверхности, успевает занять место прореагировавшего атома до вступления в реакцию с окислителем, то число активных центров уменьшается и, следовательно, снижается средняя скорость реакции. При дальнейшем повышении температуры количество атомов на поверхности, подводимых за счет диффузии из объема, может стать больше необходимого для рекомбинации с атомами, находящимися на поверхности. Эти атомы являются своеобразными активными местами, в результате чего общее число активных центров возрастает, что приводит к увеличению средней скорости реакции. Такая гипот1еза находит экспериментальное подтверждение при нагреве углеродных материалов до температур более 2600 °С, когда за счет миграции атомов из объема к поверхности заметно уменьшается плотность образцов [67]. [c.122]

    П.к. протекает по электрохим. механизму (см. Коррозия металлов). Линейная скорость углубления питтинга при стабилизировавшейся П.к. металла М может достигать 10-10 мм/год. Это обусловлено тем, что в питтинге локализуется анодная р-ция М = М -Ь ге (z-зарядовое число иона), а катодная р-ция чаще всего протекает в намного большей по размерам зоне пов-сти вокруг питтинга, если защитный слой достаточно электропроводен. Таким св-вом обладают мн. пассивирующие слои (см. Пассивность металлов), окалина, возникающая при высокотемпературной газовой коррозии, катодные металлич. покрьггия и др. Наиб, специфична по своему механизму П.К. пассивных металлов, обычно связанная с воздействием того или иного активирующего аниона А (СГ, Вг", NS, SOj, СЮ и др.) на активные центры пассивирующего слоя (дефекты). Такие центры периодически выходят на пассивную пов-сть по мере ее растворения, образуя участки с кратковременно повыш. локальной скоростью растворения, к-рые могут стать зародышами питтингов. В водных и мн. водно-орг. средах превращение зародыша в устойчиво развивающи я питтинг обычно происходит при условии, что потенциал коррозии металла превышает нек-рое значение, наз. критич. потенциалом питтингообразования (миним. потенциал П.к.). Для металла, потенциал коррозии к-рого находится в пассивной или активной области (Я, р илн соотв., рис. 1) (см. Анодное растворение), при достижении происходит резкий рост анодного тока растворения. Вероятность развития зародыша питтинга превышает вероятность его гибели (репассиваций) вследствие того, что вблизи активных центров из-за ускоренного миграц. подвода анионов-активаторов А повышена их локальная концентрация в р-ре, а на самих центрах соотв. адсорбция. В результате при Е , пасси- [c.547]

    Полимерные стекла ниже температуры хрупкости легко растрескиваются при сравнительно небольших деформациях с образованием мелких трещин. Помимо трещин различных размеров в полимерных стеклах образуются и существуют длительное время-разные структурные образования в виде капилляров, микрополостей и других форм, которые могут служить путями для миграции диффундирующих молекул При переносе паров или влажных газов в трещинах или капиллярах происходит конденсация, в результате чего проницаемость мембран из застеклованных поли.меров можно рассматривать как процесс полуактивированной , или поверхностной , диффузии. Существенное значение для проницаемости жестких мембран имеет отношение между поверхностью полости и молекулами диффундирующего вещества. При отсутствии иа поверхности полости активных центров, взаимодействующих с диффундирующими молекулами, протекает процесс неакти-вированнон диффузии. [c.129]

    Реакция миграции двойной связи в олефинах часто сопутств ет таким промышленно важным процессам, протекающим в прй сутствии металлокомплексных катализаторов, как гидрировали] гидроформилхфование и полимеризация. В связи с этим выясвм ние строения активных центров катализатора и распределения изомеров может дать ценную информацию о механизме совмести протекающих реакций.  [c.576]

    Регулируя природу кислотных центров (кислотные центры Бренстеда и Льюиса) и их активность, можно обеспечить протекание реакции в желаемом направлении. Одним из распространенных способов регулирования селективности катализаторов кислотного типа является нейтрализация наиболее активных центров основаниями (NaOH, Naa Og, амины). На катализаторах высокой кислотности (алюмосиликаты, цеолиты) протекают реакции крекинга и скелетной изомеризации, а на катализаторах средней силы (AI2O3) - дегидратация спиртов и миграция двойных связей. [c.735]

    Обычный механизм образования нестехиометрического ионного кристалла состоит 1В захвате электронов вакантными анионными узлами решетки (дефектами по Шоттки) или междоузельньгми катионами (дефектами по Френкелю) и миграцией нейтрального металлоида из кристалла. В связи с этим вопрос об устойчивости металлических активных центров в полупроводниках оказывается тесно связанным с теорией дефектов по Шоттки и Френкелю. [c.121]


Смотреть страницы где упоминается термин Миграция активных центров: [c.300]    [c.352]    [c.104]    [c.106]    [c.11]    [c.6]    [c.659]    [c.105]    [c.122]    [c.123]    [c.297]    [c.248]    [c.212]    [c.47]    [c.297]    [c.60]    [c.331]   
Смотреть главы в:

Химическая физика старения и стабилизации полимеров -> Миграция активных центров




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр

Миграция



© 2025 chem21.info Реклама на сайте