Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтрализации мет в неводных растворах

    Слабая кислота потому и называется слабой кислотой, что ее анионы прочно связывают ионы Н +. Титрование в неводных растворах хорошо подтверждает этот вывод-Таким образом, нет оснований считать, что титрование соли слабой кислоты сводится только к нейтрализации щелочи, образующейся при гидролизе соли слабой кислоты. [c.312]


    При кондуктометрическом титровании по изменению электрической проводимости контролируют взаимодействие титранта и определяемого в растворе вещества находят эквивалентные точки реакций нейтрализации, осаждения, окисления — восстановления, комплексообразования, вытеснения слабых кислот или оснований из их солей в водных и неводных растворах. В процессе одного кондуктометрического титрования можно определить содержание нескольких компонентов в смесях. [c.58]

    Пожалуй, наиболее изученной областью химии неводных растворов являются кислотно-основные реакции, исследование которых началось еще с сольво-систем. Согласно определению сольво-сп-стем, кислота может быть рассмотрена как вещество, которое путем прямой диссоциации или реакции с растворителем дает катион, характерный для растворителя основание — вещество, которое путем прямой диссоциации или реакции с растворителем дает анион, характерный для растворителя. В случае протонного растворителя катионом является сольватированный протон, и при этом условии протонное представление о кислоте эквивалентно понятию о кислоте как о сольво-системе. Например, типичные реакции нейтрализации в аммиаке протекают следующим образом  [c.351]

    В кондуктометрическом титровании для анализа индивидуальных веществ и разнообразных смесей используются самые различные типы химических реакций нейтрализации, осаждения и комплексообразования в водных и неводных растворах. [c.89]

    Согласно теории Бренстеда реакция нейтрализации должна быть названа реакцией протолиза. Особенно большое значение реакции протолиза имеют в неводных растворах. Например, в метиловом спирте реакция протолиза протекает так  [c.327]

    Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием. Например, ацетат аммония в воде — соль, в аммиаке — кислота, в уксусной кислоте — основание. Хлорид аммония в воде вследствие гидролиза является слабой кислотой (и солью), в жидкой фтористоводородной кислоте — основанием, в жидком аммиаке — сильной кислотой. Амид калия в уксусной кислоте — слабое основание, в воде — сильное основание, в жидком аммиаке — очень сильное основание. Амид калия в жидком аммиаке — более сильное основание, чем гидроокись калия в воде. [c.444]


    Для каждого конкретного случая выбор растворителя имеет важное практическое значение, так как позволяет осуществить потенциометрическое титрование в оптимальных условиях. Один из методов выбора растворителя основан на использовании потенциала полунейтрализации (1/2) титруемых кислот и оснований, который представляет собой потенциал системы при нейтрализации половины титруемой слабой кислоты или слабого основания и определяется для каждого вещества в данном растворителе опытным путем. Разность Е( п.) исследуемой кислоты или основания и стандартного вещества дает представление о возможности дифференцированного титрования смеси кислот (оснований), т е. величина А (1/2) может служить критерием их силы в неводных растворах  [c.246]

    Колбу взбалтывают, не -закрывая пробкой, и спустя некоторое время, нужное для нейтрализации оснований (нужно иметь в виду, что в неводных растворах и в гетерогенной среде это требует большего времени, чем в воде), испытывают реакцию на лакмус. Для этого каплю жидкости смешивают с каплей воды (нейтральной реакции, см. стр. 32) и смесью смачивают синюю лакмусовую бумажку. [c.194]

    Применяя специальные приемы титрования, методами нейтрализации можно определять содержание многих солей, дифференцированно (раз дельно) титровать смеси сильных, слабых и очень слабых кислот, а также смеси оснований и солей в неводных растворах. [c.74]

    Когда исследуемый объект подкислен, колбу, не закрывая пробкой, встряхивают и спустя некоторое время (в неводных растворах и в гетерогенной среде время нейтрализации больше,, чем в воде) содержимое испытывают реакцией па универсальный индикатор. Для этого каплю жидкости смешивают с каплей воды нейтральной реакции и смесью смачивают индикаторную бумагу — pH среды должен быть 2,5—3,0. [c.121]

    Справедливы ли эти определения применительно к неводным растворам, где не может быть и реч и о существовании ионов водорода и гидроксил-ионов, образующихся за счет электролитической диссоциации воды Какие вещества называют кислотами и основаниями, когда речь идет о неводных растворах Каковы современные представления о реакциях нейтрализации, протекающих в неводных растворах Вот те вопросы, на которые нужно ответить, чтобы правильно понять процессы кислотно-основного титрования, осуществляемые в неводных растворах. [c.8]

    В неводных растворах, применяемых в реакциях электрохимической аддитивной димеризации, необходимо контролировать содержание воды. Повышение содержания воды вызывает довольно существенное снижение выходов по веществу и по току. В то же время применять полностью безводные растворы нецелесообразно, поскольку они обладают низкой электропроводностью, что связано с высокими напряжениями и значительным расходом электроэнергии на электролиз. Обычно достаточное количество воды образуется в процессе приготовления раствора электролита при нейтрализации свободной кислоты щелочью. [c.326]

    Образующиеся при этом ионы гидроксила (а) могут нейтрализовать кислоты, а образующиеся ионы водорода (б) — основания. В неводных растворах, в которых указанных процессов не наблюдается вследствие отсутствия равновесия, устанавливающегося в воде между ионами водорода и гидроксила, нейтрализация кислот происходит в процессе непосредственного взаимодействия сольватированных электронов е сол с ионами лиония кислоты  [c.152]

    Протолитическая теория, позволяющая предвидеть поведение различных веществ не только в водных, но и в неводных растворах, является гораздо более общей теорией кислот и оснований, чем обычные воззрения, основанные на теории электролитической диссоциации Аррениуса. Кроме того, эта теория позволяет рассматривать с одной общей точки зрения процессы, которые по прежним воззрениям относятся к совершенно различным типам. Таковы реакция нейтрализации, взаимодействие между сильными кислотами и> солями слабых кислот или сильными основаниями и солями слабых оснований, процесс гидролиза солей и процессы электролитической диссоциации кислот н оснований. Эта теория устанавливает аналогию между протолитическими реакциями и реакциями окисления—восстановления, сущность которых заключается, как известно, в переходе электронов от атомов (ионов) восстановителя к атомам (ионам) окислителя. Все это представляет собой весьма ценные преимущества протолитической теории по сравнению с прежними воззрениями. Однако в настоящее время она еще не получила достаточно широкого распространения. Последовательное ее проведение потребовало бы перестройки всех существующих химических воззрений.  [c.184]

    Протолитическая теория, позволяющая предвидеть поведение различных веществ не только в водных, но и в неводных растворах, является более общей, теорией кислот, и оснований, чем воззрения, основанные на теории электролитической диссоциации Аррениуса. Кроме того, эта теория позволяет рассматривать с одной общей точки зрения процессы, которые, по прежним воззрениям, относятся к совершенно различным типам. Таковы реакция нейтрализации, взаимодействие между сильными кислотами и солями слабых кислот или сильными основаниями и солями слабых оснований, гидролиз солей и ионизация кислот и оснований. Протолитическая теория устанавливает аналогию между протолитическими реакциями и реакциями окисления — восстановления, сущность которых заключается, как известно, в переходе электронов от атомов (ионов) восстановителя к атомам (ионам) окислителя. [c.102]


    Введение ионов водорода в сульфосмолу при ее промывке растворами кислоты осложняет десорбцию тетрациклина, так как вытеснение ионов водорода ионами аммония приведет к нодкислению среды и выпадению основания тетрациклина., Ввиду этого необходимо провести вытеснение ионов водорода с сульфосмолы ионами аммония, используя нейтральные растворы солей аммония, которые не десорбируют тетрациклин. Только после предварительных промывок колонки можно осуществить десорбцию всего тетрациклина, сорбированного из культуральной жидкости, с полным (100 /о-м) выходом при высоких концентрациях. Нейтрализация аммиачных элюатов приводит к выпадению чистого тетрациклина, обладающего удельной активностью 900 ед./мг. Помимо этого, из элюата может быть получена и кальциевая соль тетрациклина. Выделение и очистка тетрациклина из культуральной жидкости рассмотренным методом сопровождается выходом тетрациклина, приближающимся к 8О /0. Отсутствие растворителей в этом методе и ничтожные сырьевые затраты делают его высокоэкономичным. Тем не менее вытеснение хлор- и окситетрациклина с сульфосмол неводными растворами кислот сохраняет свое значение, тем более что осуществить десорбцию хлортетрациклина с сульфосмол аммиачными растворами со значительным выходом не удалось. [c.151]

    Известно, что целый ряд реакций нейтрализации может протекать в неводных растворах. Так, в бензоле легко протекает реакция взаимодействия хлористого водорода с аммиаком [c.69]

    Аналогия между реакциями нейтрализации, протекающими в иидньгх и неводных растворах, может быть показана на следующих примерах. [c.409]

    Уравнения (IV.15) — (1У17) используют также для определения I и а в неводных растворах кислот и оснований. Согласно современной теории кислот и оснований Бренстеда и Лоури кислоту определяют как вещество, способное отдавать протон, а основание — как вещество, способное принимать протон от кислоты. Реакция присоединения водорода называется реакцией протонирования. Нейтрализация сопровол<дается переходом протона от кислоты к основанию, причем кислота или основание может быть нейтральной молекулой или ионом. Кажущаяся сила кислот и оснований в любом растворителе зависит от степени их взаимодействия с растворителем. Это определяется кислотностью или основностью самого растворителя. [c.47]

    Кроме 1еводного титрования с индикаторами метода нейтрализации, можно применять потенциометрическое, кондуктометрическое, амперометрическое титрования. Размеры капель неводных растворов значительно меньше размера капель водных растворов вследствие меньшего поверхностного натяжения. Это повышает точность титрования. Неводное титрование можно применять для редокспроцессов, комплексообразования и осаждения. [c.445]

    Для каждого растворителя существует специфичная для него шкали pH (рНр). Индекс р в показателе кислотности указывает на различную протяженность шкалы и различные значения pH, отвечающие точке нейтрализации в неводных растворах (см. 29). Поэтому указанная зависимость pH и рОН справедлива только для водных растворов. [c.98]

    В промышленности довольно острой проблемой является определение таких слабокислых соединений,как фенолы. Имеется ряд сообщений исследователей о термометрическом определении фенолов и связанных с ними продуктов. Вероятно, наиболее полезной работой в этой области является работа Вогана и Свисенбэн-ка [13], использовавших неводные растворы. Они применили несколько другой способ измерения теплоты реакции нейтрализации. Детально это исследование рассмотрено в разделе каталитических реакций. Используя уже описанные методы, некоторые исследователи при определении фенолов применили ручное титрование. Пари и Виал [14] сообщили об использовании термометрического метода для частичного определения состава смеси фенола и его метилированных аналогов, кре-золов. Бромированием фенолов они увеличили кислотность фенольной группы и таким образом получили два класса бромированных фенолов, а именно трехбромистые фенолы из фенола и /п-крезола и двубромистые фенолы из о- и р-крезола. При титровании этой смеси раствором гидроокиси натрия они получили энтальпограм-му с двумя эквивалентными точками первая точка соответствовала оттитровыванию всего количества присутствующих о- и р-крезолов, а вторая — всех присутствующих фенолов. [c.57]

    Следовательно, кислоты и основания с присущими им характерными свойствами существуют не только в водных растворах, но и в неводных растворах. Значение теории сольвосистем состоит в том, что она признает возможность кислотно-основных реакций в неводных растворах. Однако теория сольвосистем рассматривает только ионизированные растворители, а между тем известны реакции нейтрализации, которые протекают в псионизированных растворителях или в отсутствие всякого растворителя (например, взаимодействие аммиака с хлористым водородом). Большим недостатком теории сольвоаистем является то, что она не учитывает влияния растворителей на поведение кислот и оснований. [c.11]

    Исследование неводных растворов кислот, в частности растворов хлористого водорода в эфире и бензоле, показали, что, хотя кислоты в этих растворах не образуют ионов водорода, они реагируют с цинком и другими металлами с выделением водорода, обладают каталитической активностью, в этих растворах может быть проведена их нейтрализация основаниями. Дальше было установлено, что и другие ионы (кроме иона водорода и иона гидроксила) могут проявлять кислотные и основные свойства, например ионы и N112 в жидком аммиаке. Оказалось также, что многие вещества проявляют либо основные, либо кислотные свойства в зависимости от растворителя. Так, мочевина характеризуется нейтральными свойствами в воде, основными в муравьиной кислоте и кислыми в аммиаке. Было найдено, что многие вещества, даже не содержащие водорода, например АЮЦ в серном эфире, реагируют с основаниями (пиридином) с образованием солей, т. е. проявляют свойства кислот. [c.295]

    Особое значение методы нейтрализации имеют при титровании неводных растворов. В этом случае удается определять такие вещества, которые практически невозможно определить объемным методом в водной ар еде. Методы кислотно-ооновного титрования в неводной среде заслуживают внимания еще и потому, что они применимы для определения веществ, нерастворимых в воде или образующих с водой стойкие, нерасслаяваю-щиеся эмульсии. В подходящей неводной среде можно оттитровать любые кислоты и основания, независимо от величин констант их электролитической диссоциации больше того, в неводных средах можно дифференцированно титровать разнообразные смеси кислот (или оснований), независимо от их органической или неорганической природы я характера, соли слабых кислот в присутствии свободных оснований и т. д. Например, в среде метилизобутилкетона при помощи титрованного раствора гидроокиси тетрабутиламмония можно в одной пробе анали- [c.179]

    Подобная картина наблюдается и при использовании неводных растворов. При осаждении покрытий из растворов тройных сополимеров метилметакрилата с метакриловой кислотой и ее солями (натрия или калия) в диметилформамиде [1, 5 ] с увеличением содержания солевой формы в сополимере выход по току сначала резко возрастает (рис. 9), что можно объяснить усилением диссоциации сополимера. Однако при достижении определенной степени диссоциации (при 70% нейтрализации кислоты в сополимере) возникает обратное явление — ассоциация полиионов и противоионов и снижение выхода по току. Одновременно аналогичным образом меняется и адгезия полимера к электроду (рис. 10) [1 ]. Выход по току резко падает и при наличии в ванне посторонних примесей, диссоциирующих на ионы, так как ток расходуется на их электролиз. [c.31]

    Иониты, получившие широкое распространение для сорбции самых разнообразных веществ из водных и неводных растворов, до недавнего времени не использовались для поглощения газов. Вместе с тем, благодаря возможности придавать им любую химическую форму, необходимую для реакции с отдельным газом или группой газов, высокой удельной емкости по сравнению с обычными физическими сорбентами, химической стойкости, достаточной прочности зёрен и простоте регенерации, — иониты весьма перспек- тивны для разделения, очистки и анализа газов. По отношению, например, к кислым и основным газам соответствующие иониты ведут себя как типичные основания и кислоты и взаимодействуют с ними по реакции нейтрализации. Иониты, как особый вид химических реагентов, способны к присоединению молекул газа с образованием нового простого или комплексного иона, к реакциям нейтрализации с образованием воды, к реакциям разложения или вытеснения, к окислительно-восстановительным реакциям и др. Во всех случаях продукт взаимодействия газа с ионитом оказывается химически связанным с последним. По сравнению с жидкими поглотителями газов преимущество ионитов заключается в более простом технологическом и аппаратурном оформлении процесса газоочистки. [c.175]

    Определение концевых карбоксильных групп основано на потенциометрическом титровании навесок полимера в диметилформамиде неводным раствором щелочи. Наиболее подходящей для титрования парой электродов является платинооксидный (индикаторный электрод) и каломельный (электрод сравнения). В качестве индикаторного можно использовать стеклянный электрод с ним удобнее работать. Вначале проводят титрование раствором НС1 (определение примесей основного характера). После прохождения скачка потенциала заменяют титрант на 0,05 или 0,1 к. спиртовую щелочь и титруют второй раз. На кривой титрования наблюдается два резких изменения потенциала, первый из которых соответствует нейтрализации избыточного количества НС1, а разность между вторым и первым изгибами с учетом поправки на холостое титрование соответствует общему содержанию карбоксильных групп. [c.63]

    Понятия кислота и основание имеют свою продолжительную историю идо сих пор не получили достаточно удовлетворительного определения. Многие реакции нейтрализации способны протекать в неводных растворах, при этом не происходит образования воды в результате соединения ионов Н+ и ОН , хотя соли и образу1отся. Например, в реакции взаимодействия хлористого водорода с аммиаком, протекающей в бензоле, кислота теряет свои свойства, в результате чего образуется соль [c.238]


Библиография для Нейтрализации мет в неводных растворах: [c.61]   
Смотреть страницы где упоминается термин Нейтрализации мет в неводных растворах: [c.128]    [c.40]    [c.326]    [c.93]    [c.63]    [c.63]    [c.123]   
Курс аналитичекой химии издание 3 книга 2 (1968) -- [ c.342 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрализация

Растворы неводные



© 2024 chem21.info Реклама на сайте