Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория активации молекул

    Теория активации молекул [c.124]

    Очевидно, скорость реакции зависит не только от числа столкновений, но и от каких-то свойств сталкивающихся молекул. Это явление находит объяснение в теории активации Аррениуса. [c.154]

    Теория активации молекул. ....... [c.335]

    Реакции в электрическом разряде. Основные положения теории реакций в разрядах (в частности, анализ механизма активации молекул) были разработаны в тридцатых годах Н. И. Кобозевым, С. С. Васильевым и Е. Н. Ереминым. Скорость химических процессов, происходящих в тлеющем разряде, дуге и т. д., пропорциональна мощности электрического разряда. Исследованы лишь немногие процессы, например  [c.145]


    Согласно взглядам, развитым Линдеманом, в мономолекулярных реакциях причиной активации молекул исходного вещества, является их взаимное столкновение. Активированная молекула способна вступить в реакцию, так как она обладает избыточной энергией, достаточной для разрыва химических связей. Величина скорости образования таких активных молекул равна скорости химической реакции плюс скорость, с которой эти молекулы теряют свою активность в результате последующих столкновений с другими молекулами. Дело в том, что по теории Линдемана активированная молекула, если она не вступила в реакцию, а столкнулась с другой молекулой, теряет свою активность и переходит из возбужденного состояния в нормальное. Таким образом, эта теория рассматривает мономолекулярные реакции как бимолекулярные. [c.144]

    По современным воззрениям активация молекул происходит за счет столкновений. Несмотря на то, что число столкновений в единицу времени для определенного числа молекул зависит от концентрации молекул, скорость мономолекулярных реакций не зависит от давления. Кажущееся противоречие устраняется следующей принятой в настоящее время теорией, высказанной впервые Линдеманом (1922). Но этой теории активация молекул происходит за счет столкновений, но между активацией и реакцией протекает определенный промежуток времени, в течение которого большинство молекул успевает дезактивироваться. В результате устанавливается стационарная концентрация активированных молекул, вычисляемая по закону Максвелла-Больцмана, так как доля разлагающихся молекул недостаточно велика, чтобы нарушить это равновесие. Таким образом скорость реакции зависит только от числа молекул, но не от давления. [c.18]

    Участие внутренних степеней свободы в активации молекулы. Теории Гиншельвуда, Касселя и Слетера [c.167]

    Теория активации молекул, участвующих в реакции, привела к физической интерпретации понятия энергия активации, которое, как известно, было введено в химическую кинетику Аррениусом в 1889 г. для объяснения влияния температуры на скорость реакции (стр. 79). [c.57]

    Ф. Линдеман предложил первую теорию мономолекулярных реакций, объясняющую первый порядок этих реакций при бимолекулярной активации молекул. Последующее развитие теория мономолекулярных реакций получила в работах Хиншельвуда (1927), Райса и Рамспергера (1927). Касселя (1928). Слейтера (1939), Маркуса (1952). [c.344]


    В первой главе даются общие понятия о типах химических связей, основные представления о механизме ферментативных реакций и их общие схемы. На основе законов термодинамики и химической кинетики кратко изложена теория активации молекул, кинетика ферментативного процесса и влияние температуры и реакции среды на биокаталитические процессы. [c.3]

    Мономолекулярные реакции с участием многоатомных молекул являются наиболее трудоемким объектом моделирования с помощью метода классических траекторий. Сложности вычислений связаны как с процедурами адекватного воспроизведения различных видов активации молекулы, так и с необходимостью расчетов длинных по времени траекторий. В этом разделе анализируются конкретные реакции мономолекулярного распада, исследованные методом классических траекторий. В рассмотренных работах изучен механизм межмодового перераспределения энергии и протекания мономолекулярной реакции в зависимости от вида активации молекулы. Предложены процедуры адекватного воспроизведения начальных условий, соответствующих тому или иному виду активации. Как уже отмечалось выше, динамические расчеты могут служить базой для проверки статистических теорий, которые широко используются в теории мономолекулярного распада. В ряде работ проведена проверка применимости статистических теорий на базе вычисления функции распределения по временам жизни, определено время установления равновесного распределения. [c.113]

    Природа процесса активации является проблемой, разрешению которой было посвящено много исследований. Мы можем уделить здесь место лишь важнейшим из них. Согласно коллизионной теории активации, молекулы приобретают необходимую для активации энергию в процессе столкновений, ведущих к распределению молекулярных скоростей в согласии с теорией вероятности это предположение приводит к уравнению 7. Однако указанное уравнение не вполне точно отражает действительность, в особенности [c.221]

    Ф. Линдеман предложил первую теорию мономолекулярных реакций, объясняющую первый порядок этих реакций при бимолекулярной активации молекул. Последующее развитие теория мономолекулярных реакций получила в работах Хиншельвуда (1927), Райса и [c.370]

    В 1889 г. С. Аррениус выдвинул теорию активации, объясняющую сущность химических реакций. Согласно этой теории при столкновениях во взаимодействие вступают только те молекулы, которые обладают определенным запасом энергии, необходимой для осуществления той или иной реакции. Эти молекулы называются активными молекулами. [c.86]

    Полу чение всех этих характеристик, несмотря на значительный прогресс учения о химическом превращении за последние десятилетия, связанный с развитием квантовой химии и теории строения молекул, представляет трудную задачу. Некоторые вопросы, например, вопрос о вычислении энергии активации обычной и радикальной реакций, все еще остаются неразрешенными. [c.161]

    Теория мономолекулярных реакций развивалась на основе представления о том, что активация молекул происходит путем двойных столкновений, так же как и в бимолекулярных реакциях, но только в реакцию вступает незначительная доля активированных молекул. Максвелл-Больцмановское распределение при этом остается ненарушенным и для константы скорости мономолекулярной реакции получается выражение [23] [c.173]

    Линдеманн (1922 г.) применил теорию столкновений к моно-молекулярным реакциям. Он предположил, что такие реакции также осуш,ествляются по бимолекулярному механизму, т. е. элементарному акту реакции предшествует активация молекулы в результате столкновения. Активные молекулы имеют только две возможности дальнейшего превращения либо дезактивацию при следующем столкновении, либо превращение в продукт реакции [c.171]

    Механизм протекания одномолекулярных реакций с точки зрения теории активации сводится к следующему активная молекула, обладая достаточным избытком энергии по сравнению со средним значением, распадается в промежутке времени от одного до другого столкновения. Если же акт реакции ие успел произойти, то активная молекула, столкнувшись с медленно двигающейся молекулой или со стенкой сосуда, может передать часть своей энергии и перестать быть активной (явление дезактивации молекул). После этого она уже не способна вступать в реакцию до тех пор, пока в результате столкновений снова не получит излишек энергии. Таким образом, в одномолекулярных реакциях между активацией и реагированием проходит некоторое время, в течение которого активная молекула или распадается или же дезактивируется. [c.129]

    Теория активации. Основная предпосылка закона действую-щих масс состоит в том, что для возникновения химической реакции между веществами необходимо тесное соприкосновение (соударение) молекул. [c.135]


    Согласно теории активации, в химическое взаимодействие вступают только активные молекулы, обладающие запасом энергии, лежащим не ниже определенного уровня, характерного для каждой данной реакции. [c.135]

    Чтобы протекала реакция (в том числе и мономолекулярная) молекулы, которые вступают в реакцию, должны быть активированы. С точки зрения теории столкновений молекулы могут получить энергию активации в результате столкновений. Однако число двойных столкновений зависит от квадрата концентрации (или от квадрата давления), и, следовательно, казалось бы, такая реакция должна дать второй порядок. Для выхода из этого противоречия Линдеман предложил схему процессов, согласно которой при некоторых условиях число активных молекул, получающихся в результате столкновений, не зависит непосредственно от числа столкновений. [c.275]

    Энергия активации. Сильное увеличение скорости реакции с возрастанием температуры объясняет теория активации. Согласно этой теории, в химическое взаимодействие вступают только активные молекулы (частицы), обладающие энергией, достаточной для осуществления данной реакции. Неактивные частицы можно сделать активными, если сообщить им необходимую дополнительную энергию. Этот процесс называется активацией. Один из способов активации — увеличение температуры при повышении температуры число активных частиц сильно возрастает, благодаря чему резко увеличивается скорость реакции. [c.65]

    Повышение температуры понижает физическую адсорбцию, так как при этом усиливается движение молекул в адсорбционном слое, нарушается ориентация адсорбированных молекул, т. е. увеличивается десорбция. С другой стороны, повышение температуры увеличивает энергию адсорбируемых частиц, что, согласно теории активации, усиливает химическую адсорбцию. Следовательно, в одних случаях повышение температуры усиливает десорбцию, в других — увеличивает адсорбцию. Так, для большинства газов повышение [c.136]

    Кристиансен и Кремерс (1924 г.) предложили теорию, согласно которой активация молекул происходит за счет избытка энергии продуктов реакции, протекающей по следующему механизму  [c.100]

    Значительные изменения скорости реакций с изменением температуры объясняет теория активации. Согласно этой теории, в химическое взаимодействие вступают только активные молекулы, обладающие энергией, достаточной для осуществления данной реакции. Неактивные молекулы можно сделать активными, если сообщить им необходимую дополнительную энергию,— этот процесс называется активацией. Один из способов повышения активации молекул — увеличение тем- [c.38]

    Несоответствие между числом столкновений молекул и наблюдаемой скоростью, а также высокий температурный коэффициент скорости химической реакции объяснила теория активации (С. Аррениус, 1889 г.). Согласно этой теории не всякое столкновение молекул приводит к акту химической реакции. Реакция происходит лишь при столкновении так называемых активных молекул, т. е. молекул, обладающих повышенным запасом энергии по сравнению с другими молекулами тех же веществ. [c.124]

    Возникает вопрос о природе энергии активации в мономолекулярных реакциях. Активация молекул не может осуществляться в результате поглощения лучистой энергии хотя бы потому, что реагирующие вещества не поглощают света как раз в области тех длин волн, которые должны были бы вызывать активацию. Облучение светом с такими длинами волн не приводило к ускорению реакций. Позже возникла теория, согласно которой причиной превращения молекулы является миграция тепловой энергии. Для того чтобы произошла реакция, необходимо, чтобы определенная критическая энергия сконцентрировалась на той связи внутри молекулы, по которой происходит разрыв. [c.434]

    Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, т.к. число столкновений пропорционально концентрациям реагирующих веществ. Однако не все столкновения молекул сопровождаются взаимодействием. Скорость реакции зависит не только от числа столкновений, но и от каких-то свойств сталкивающихся молекул. Это явление находит объяснение в теории активации Аррениуса. Согласно этой теории реакционноспособны только тс молекулы, которые обладают запасом энергии, необходимым для осуществления той или иной реакции, т.е. избыточной по сравнению со средней величиной энергии молекулы. Эта избыточная энергия активной молекулы, благодаря которой становится возможна химическая реакция, носит название энергии активации. [c.641]

    Механизм свободных радикалов предсказывает изменение порядка реакции от 1/3 при высоких давлениях до 1 /2 при низких давлениях, при этом следует принимать во внимание изменение реакции инициирования цепи от мономолекулярной до бимолекулярной при низких давлениях согласно теории активации молекул столкновением. Такое предсказанное изменение находится в качественном соответствии с наблюдаемым уменьшением значений констант первого порядка при уменьшении давления. По экспериментальным данным реакция при высоких давлениях имеет приближенно первый порядок, но следует иметь в виду, что отличить реакцию первого порядка от реакции половинного порядка по одному только изменению начального давления в ограниченном интервале и наблюдению смещения констант первого порядка довольно трудно. Кухлер и Тиле [25] предполон или, что даже при высоких давлениях инициирование цепи является бимолекулярной реакцией, для которой теоретически предсказывается первый порядок при указанном давлепии. Это, конечно, не может согласоваться с их процессом экстраполирования констант скорости до бесконечного давлеиия, так как этот процесс означает, что реакция мономолекулярна, по крайней мере, при высоких давлениях. [c.25]

    Сформулируйте основные положения теории активации молекул, Что называется энергией активацин  [c.151]

    НОГО столба скорость разложения уменьшается до предельной вепичинЫг составпяюш,ей 1/10 от начальной скорости. Энергия активации полностью ингибированной реакции постоянна в значительном интервале давлений, достигая, согласно работам Ингольда, Стэббса и Гиншельвуда [21], величины 74,7 ккал и величины 77,3 ккал, согласно Стипи и Шейну [45]. Ингибированная реакция имеет первый порядок по отношению к концентрации этана в условиях высоких давлений. Порядок реакции начинает увеличиваться при начальном давлении несколько нин е 250 мм и прп 2 мм достигает величины второго порядка в соответствии с теорией столкновения молекул при мономолекулярных реакциях. [c.21]

    Для объяснения энергетики звукохимических процессов предложены две теории тепловая и электрическая. Согласно тепловой теории молекулы переходят в возбужденное состояние в результате значительного повышения температуры внутри кавитационного пузырька в процессе его адиабатического сжатия. Электрические теории объясняют процесс активации молекул возникновением и накоплением электрических зарядов на стенках кавитационного пузырька. Установка для звукохимических реакций состоит из реактора и генератора ультразвуковых колебаний [И]. [c.25]

    Одним из немногих примеров, когда это осуществимо, является колебательная релаксация гармонических осцилляторов, рассмотренная в 8. Для многоатомных молекул рассчитать функцию к (Е, Е ) практически невозможно, так что теория активации и дезактивации при столкновениях в значительной степени осног.ы1)ается на гипотезах, относящихся к общим свойствам функции к Е, Е ). Две альтернативные гипотезы, позволяющие существенно упростить микроскопические кинетические уравнения, формулируются как гипотеза сильных столкновений и гипотеза многоступенчатой активации и дезактивации [98]. [c.107]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисерг, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасыщенные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соедпнение можно рассматривать как активный центр, который может активировать молекулы горюч й смеси и тем самым сильно способствовать ускорению химической реакцпи. Подтверждением теории свободного водорода (как дополнительного фактора-детонации) и является хорошо известная большая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окнсляел1ых ненредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае нос родстве и но окисляемых предельных углеводородов этот процесс завершиться не успевает. Это том более важно, что именно нестойкие формы перекисей глав- [c.356]

    Сильное изменение скорости реакции с изменением температуры объясняет теория активации. Согласно ее представлениям а химическое нзаимодействие вступают только активные молекулы,. [c.70]

    Однако в начале XX столетия В. И. Палладиным было выдвинуто новое воззрение, в котором главную роль играло не окисление углерода, а окисление водорода, отщепляемого от различных молекул и превращаемого в воду выделение СОг при дыхании оказалось результатом того, что молекулы пищевых веществ, лишенные своего водорода, рождали в остатке от своих карбоксильных групп именно двуокись углерода, кислород, который приходил не из вдыхаемого воздуха, а предсуществовал в молекулах пищи (в сахарах, жирах, белках и т. п.). Теория активации не кислорода, а водорода удержалась в науке до сих пор и была развита в свете представлений об участии в биопроцессах именно аденозинтрифосфата. [c.333]

    При повышении температуры скорость химических реакций обычно возрастает. Это объясняется теорией активации. Не все столкновения между молекулами приводят к их взаимодействию. Для этого молекулы должны обладать достаточной энергией. Такие молекулы называют активными. Энергия, необходимая для активирования молекул, называется энергией активации (Еакт) [c.141]


Смотреть страницы где упоминается термин Теория активации молекул: [c.14]    [c.92]    [c.22]    [c.298]    [c.75]   
Смотреть главы в:

Физическая и коллоидная химия -> Теория активации молекул




ПОИСК





Смотрите так же термины и статьи:

Бимолекулярный механизм активации мономолекулярной реакУчастие внутренних степеней свободы в активации молекулы Теории Хиншелвуда, Касселя и Слетера

Теория активации

Теория активных молекул. Энергия и источники активации

Участие внутренних степеней свободы в активации молекулы Теории Гиншельвуда, Касселя и Слетера



© 2025 chem21.info Реклама на сайте