Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен на палладии

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]

    Ввиду исключительной легкости гидрогенизации этилена (он может гидрогенизироваться уже при—89° [51]) было высказано предположение, что для задержки реакции на стадии этилена необходимо применять относительно неактивный катализатор. Сравнительно малоактивные катализаторы нужного качества приготовлялись двумя путями 1) сильным разбавлением активных катализаторов такими инертными носителями, как силикагель или кизельгур (в отношении от 100 1 до 1000 1), и 2) частичным отравлением (отравление палладия ртутью или свинцом, отравление никеля серой или селеном). Присутствие разбавляющего пара также способствует избирательной гидрогенизации ацетилена в этилен благодаря торможению реакции гидрополимеризации ацетилена в более высокомолекулярные углеводороды. [c.240]

    Рассматриваются возможности получения стирола в одностадийном процессе окислительным ал]килированием бензола этиленом в присутствии ацетата палладия при 80 °С и 2,15 МПа [41]  [c.35]

    Процесс окисления протекает через стадию образования промежуточного я-комплекса палладия с этиленом, который под воздействием воды распадается по нескольким направлениям. [c.305]

    При введении этилена в водный раствор хлористого палладия образуется комплекс этилен — хлористый палладий [c.75]

    Гидрирование. Алкины присоединяют водород в присутствии катализаторов с образованием алканов или алкенов (неполное гидрирование). Так, если в качестве катализатора применяют никель или платину, то при гидрировании ацетилена образуется предельное соединение этан, а с катализатором палладий или железо— этилен  [c.330]

    И. Г. Фарбениндустри селективное гидрирование ацетилена, получаемого из карбида кальция, проводилось на палладии, нанесенном на силикагеле. Флеминг с соавторами [13] указывают, что из большого числа запатентованных в США катализаторов наиболее удовлетворительным оказался сульфид молибдена на активной окиси алюминия как носителе. Ими же были предложены три варианта катализаторов для селективного гидрирования ацетилена в продуктах пиролиза на этилен различного сырья А — при крекинге этана В — нри пиролизе пропана и С — нри крекинге тяжелого угле- [c.152]


    Для расщепления этиленов с образованием альдегидов применяли различные окислители. Обычно используют озон сам по себе или в смеси с кислородом и восстановление озонида водородом в присутствии такого катализатора, как палладий на древесном угле. В некоторых случаях озониды превращаются в альдегиды в обыч- [c.15]

    Потенциальным источником альдегидов является окисление комплекса хлористого палладия с олефинами. Комплекс хлористого палладия с этиленом был изуче в качестве системы- для промышленного получения ацетальдегида с водным раствором ацетата натрия комплекс образует винилацетат [66]. [c.17]

    Катализируемое палладием (II) присоединение воды к этилену является важнейшей частью процесса синтеза ацетальдегида (см. разд. 15.6.3.1 и 15.6.3.10). Образующиеся из олефинов комплексы с а-связями углерод—металл играют роль нестабильных промежуточных продуктов в ряде таких реакций, как гомогенное гидрирование, изомеризация и полимеризация олефинов (см. разд. 15.6.3.2, 15.6.3.3 и 15.6.3.4). [c.272]

    На палладиевом катализаторе ацетилен практически на 100 % гидрируется в этилен. Это объясняется тем, что ацетилен лучше адсорбируется на поверхности палладия, чем этилен, и поэтому происходит вытеснение молекул олефина с поверхности катализатора. [c.707]

    Алкены окисляют и а присутствии солей палладия, например, этилен до ацетальдегида  [c.90]

    Трилон Б осаждают в виде малорастворимой этилен-диаминтетрауксусной кислоты при подкислении отработанного раствора серной кислотой до получения рН=0,5 — 2,5. Перед этим из раствора удаляют медь путем разложения раствора двухлористым палладием. Этот процесс [c.85]

    Изменяется реакционная способность связанного алкена он более легко подвергается атаке нуклеофильных реагентов. Облегчаются реакции присоединения. Практическое значение имеет присоединение воды к этилену в присутствии солей палладия, когда одновременно происходит и окисл ение с образованием уксусного альдегида (гл. П.4.4). [c.267]

    Полученные в результате исследования данные позволяют осуществить непрерывный процесс синтеза щавелевой кислоты окислением этилена по следующей схеме (рис. 4). В реактор первой ступени 2 непрерывно подается раствор хлористого палладия в 65—70%-ной азотной кислоте и этилен из смесителя 1, При температуре 30—50 °С здесь происходит поглощение этилена и его частичное окисление. Окончательное окисление с образованием щавелевой кислоты происходит в реакторе второй ступени 4 при температуре 60—62 °С. Реактор 4 продувается воздухом для окисления и выделения нитрозных газов. Из реакционного раствора, непрерывно отбираемого из системы, при 10—12 °С выкристаллизовывается щавелевая кислота, которая отделяется на центрифуге 7, и после отделения осадок щавелевой кислоты промывается и сушится. Маточный раствор, содержащий катализатор, повторно используют в процессе. В абсорберах I и И ступени 5 ж8 улавливаются окислы азота и отделяется непрореагировавший этилен, который возвращается в цикл. [c.33]

    Для осуществления избирательной гидрогенизации в лабораторных условиях наиболее часто используются катализаторы палладий и никель Реноя. Для заводской практики, например при избирательной гидрогенизации ацетилена в этилен, для удаления ацетиленовых углеводородов из бутадиена и для удаления олефинов пз крекинг-бензина патентной литературой рекомендуются различные отравленные катализаторы. [c.239]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Получаемый продукт состоит из 607о диацетата, 35% моноацетата и 5% этиленгликоля с общей селективностью их образования 97%. Катализаторами являются смесь хлоридов палладия и меди, нитрат палладия и особенно ТеОг, промотированный соединениями брома. Сиитез ведут при 160 °С и 2,8 МПа с 60%-ной степенью конверсии этилена и циркуляцией непревращенных газов. Вторая стадия заключается в гидролизе полученной смеси водой при ПО—130°С, когда вырабатывают уксусную кислоту, направляемую на рециркуляцию, и этиленгликоль. При этом суммарный выход этиленгликоля достигает 94% по этилену, что значительно превосходит традиционный способ синтеза. Сообщается о пуске крупных установок производства этиленгликоля по этому методу, но надежных данных по технологии и экономике производства пока нет. [c.454]


    Метан. Метан отходящих газов гидрогенизационных заводов в Гельзенкирхене и Шольвене перерабатывался на ацетилен электрокрекингом в Хюльсе. Общая продукция ацетилена превышала здесь 40 ООО т в год. Большая часть этого ацетилена перерабатывалась через уксусный альдегид, алдоль в дивинил. Но здесь же находилась и установка по гидрированию ацетилена в этилен над палладием на силикагеле, установка по выделению водорода глубоким холодом и др. В дуге напряжением в 7 ООО в получается ацетилен чистотой 97—98%. Его приходится подвергать весьма сложной очистке. Помимо водорода, окиси углерода и этнлена, такой ацетилен содержит следующие иримеси (вгр на 1 м ) H N 1—3, нафталина 1—3, бензола 1—6, диацетилена 15—20, сажи 20—25. Однако при этом процессе себестоимость ацетилена меньше, чем генерируемого из карбида кальцпя. [c.167]

    Это так назьшаемый процесс Уоккера, в котором этилен окисляется в ацетальдегид в водном растворе хлорной меди, содержащем следы хлористого палладия. При производстве ацетальдегида этот процесс можно осуществить в двух вариантах как одно- и как двухстадийный /2/. В ходе реакции хлористый палладий, окисляя этилен в ацетальдегид, сначала восстанавливается до элементарного Палладия, но тотчас же вновь окисляется в хлористый палладий хлорной медью. В процессе регенерации катализатора хлористая медь снова окисляется до хлорной меди кислородом, который является в конечном счете окисляющим агентом /8/. [c.284]

    Наконец, нужно указать на селективное гидрирование ацетилена в этилен, которое проводили в Германии во время второй мировой войны (в Хюльсе и Гендорфе) [29]. Ацетилен предварительно очищали от следов сероводорода и фосфористого водорода обработкой хлорной водой. Очищенный ацетилен гидрировали при 270° и атмосферном давлении водородом, взятым в 50%-ном избытке, в присутствии специального палладиевого катализатора (0,01 % металлического палладия на силикагеле). Входящие в реактор газы разбавляли водяным паром, а температуру процесса регулировали тем, что в реактор впрыскивали воду в точках, расположенных вдоль оси слоя катализатора. Выходящие газы содержали 65% этилена их конденсировали и разделяли ректификацией по системе Линде—Бронна. Выход этилена равнялся 85%, считая на ацетилен побочными продуктами являлись этан и ненасыщенные С4- и Св-углеводороды. [c.125]

    Наиболее реакционноспособен незамещенный этилен но мере замещения реакционная способность олефинов понижается, поэтому реакция замещения осуществляется по менее замещенной стороне двойной связи [271], Алкилирование удается провести только в тех случаях, когда алкильная группа не содержит в -положении атома водорода так, успещно можно ввести метильную, бензильную и неопентильную группы [272]. Тем не менее содержащую -водород винильпую группу удалось ввести (с образованием 1,3-диенов), проводя реакцию олефина с ви-нилгалогенидом в присутствии триалкиламина и катализатора, состоящего из ацетата палладия и триарилфосфина, ири температуре от 100 до 150 °С [273]. [c.98]

    Наиболее широко применяемыми и наиболее изученными реакциями этого типа являются, по-видимому, катализируемые соединениями палладия(II) реакции алкенов с водой. Так, первая стадия производства ацетальдегида [617] включает нуклеофильную атаку воды на координированную молекулу этилена (схемы 584—587 см. также разд. 15.6.3.1). В ходе этого процесса, катализируемого палладием и медью, расходуются этилен, вода и кислород соединения меди(II) добавляются для промотирова шя непрерывною окисления образующегося металлического палладия до палладия(II). [c.397]

    На рис, 8.6 приведены некоторые кинетические параметры константа скорости к (с ) и энергия активации (ккал/моль) элементарных актов превращения переходного состояния этана с трех-, четырех- и шестьюатомным кластером палладия. Направление К2 приводит к этилену - дегидрирование этана, а К4 к метану - крекинг этана. Анализ этих структур показывает, что наибольшая скорость указанных превращений углеводорода достигается в случае кластера Рс1в, причем выход метана с ростом температуры будет увеличиваться. Это следует из сравнения величин энергии активации - для направления К4 она больше, чем для К2. Как известно, реакции с высокой энергией активацшг начинают протекать с заметной скоростью при повышенной температуре. [c.520]

    Ф. Филлипсом в 1894 г. впервые было показано, что этилен восстанавливает соли палладия, например Pd lj, до металлического палладия, окисляясь при этом до ацетальдегида. Однако эта стехиометрическая реакция не получила применения. Только в 1959 г. Дж. Смитом и В. Хафнером в Германии был разработан каталитический способ получения ацетальдегида из этилена ("Вакер-процесс ). Так, при пропускании этилена через водный раствор, содержащий хлорид палладия(Н), протекает реакция  [c.605]

    Известно, что этилен с Pd lj образует л-комплекс, который содержит активированную к нуклеофильным реагентам двойную связь. Возможно присоединение воды и образование палладийор-ганического соединения, который распадается на уксусный альдегид (через енольную форму — виниловый спирт) и палладий  [c.117]

    При использовании цеолита Y, содержащего палладий (0,5 масс. %) и редкоземельные элементы (РЗЭ), в котором более 95 % структурного натрия замещается на РЗЭ и другие катионы, активность образцов катализатора в реакции алкилирования изобугана этиленом находится в следующей последовательности  [c.879]

    Олефины. В УСЛОВ1ИЯХ деструктивной гидрогенизации, т. е. крекинга при давлении водорода, основной реакцией превращения олефинов является их гидрирование в соответствующие парафины. Применение катализаторов (платина, палладий, никель) позволяет снизить температуру гидрирования. Экспериментально показано, что скорость гидрирования снижается по мере увеличения числа атомов углерода в молекуле олефнна — для этилена относительная скорость равна 1, для пропилена — 0,8, для н-октена 0,6. Указанные данные позволяют объяснить, почему на первой стадии гидрогенизации (в жидкой фазе) в полученных тяжелых жидких продуктах содержится значительное количество непредельных соединений, а в газах почти отсутствует этилен. При деструктивной гидрогенизации практически сведена до м инимума лолимеризация олефинов, поскольку скорость 1ИХ гидрирования значительно выше скорости полимеризации. В условиях деструктивной гидрогенизации возможна циклизация олефинов с образоваиием ароматических углеводородов — циклодегидрогенизация. Этот процесс проводят в присутствии оксидных катализаторов. [c.166]


Смотреть страницы где упоминается термин Этилен на палладии: [c.239]    [c.630]    [c.481]    [c.155]    [c.630]    [c.292]    [c.151]    [c.179]    [c.1246]    [c.365]    [c.677]    [c.293]    [c.275]    [c.312]    [c.405]    [c.242]    [c.225]    [c.607]    [c.278]    [c.330]    [c.246]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.21 , c.47 , c.146 , c.148 , c.157 , c.158 , c.158 , c.161 , c.161 , c.476 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте