Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильные из амидов кислот

    Вторая группа процессов гидрирования соответствует восстановлению органических соединений (хотя к восстановлению относят и превращение карбонильных соединений в спирты, не сопровождающееся отщеплением воды). К ним принадлежит гидрирование карбоновых кислот в спирты, спиртов — в углеводороды, амидов кислот и нитросоедииений — в амины и т. д.  [c.458]


    Физические свойства. Амиды кислот — кристаллические вещества (исключение — жидкий амид муравьиной шслоты — формамид). В ВИК-спектрах амилы кислот определяются двумя полосами. Полоса 1690—1630 ем соответствует валентному колебанию карбонильной группы, а полосы 1620—1590 и 1550— 1510 см — деформационному колебанию ЫН. [c.206]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]


    Первоначально идентичность УФ-спектров а- и -гидрокси-пйридинов со спектрами Л -метилпиридинов, которым отвечает единственная структура, позволила предположить, что в отличие от а- и у-аминопиридинов а- и у-гидроксипиридинам отвечают формулы (110) и (111). Однако впоследствии было показано, что реальным а- и у-гидроксипиридинам несвойственны реакции, характерные для карбонильной группы (они не реагируют с фенилгидразином и не присоединяют реактивов Гриньяра), а также для вторичной аминогруппы (они с трудом реагируют с СНз1 и не образуют солей четвертичных аммониевых оснований). На этом основании соединение (НО) следует скорее относить к амидам кислот, а соединение (Ш)—к ви-нилогам амидов кислот. В обоих соединениях взаимное влияние функциональных групп настолько велико, что обе они утрачивают характерные для каждой из них свойства. [c.549]

    Б воде устойчивы и амиды кислот. Но в присутствии достаточно высокой концентрации ионов водорода амиды могут присоединять протон, т. е. переходить в форму сопряженной кислоты. Получается заряженная частица, причем в результате наличия положительного заряда рядом с карбонильным атомом С и дополнительного оттягивания от него электронов заряд на самом атоме С возрастает и это облегчает атаку его неподеленной парой электронов воды. В присутствии достаточно сильных кислот проходит гидролиз амидов по реакции [c.239]

    Незамещенные или монозамещенные амиды кислот могут присоединяться к а,р-ненасыщенным карбонильным соединениям и нитрилам. Эта реакция всегда требует участия основных катализаторов. Особенно легко вступают в эту реакцию такие амиды, как фталимид или сукцинимид, а также амиды сульфокислот. Под действием катализатора они очень легко превращаются в соответствующие основания, присоединяющиеся по кратной связи [см. схему (Г. 8.49)]. Образующиеся продукты присоединения представляют интерес, поскольку омылением амидной группы можно получить (3-аминоэтильные соединения. Прямым присоединением аммиака или моноалкиламинов эти соединения получаются лишь с трудом. Примером использования реакции присоединения амидов может служить 3-аланин, для которого ниже приводится удобный лабораторный метод получения. [c.214]

    Присоединение амидов кислот к а,р-ненасыщенным карбонильным соединениям [c.214]

    Химия фосфорорганических соединений за последние два десятилетия переживает период бурного развития. Это связано прежде всего с тем широким применением, которое нашли эти соединения в самых различных областях народного хозяйства. С каждым годом расширяется использование фосфорорганических соединений в качестве инсектицидов, фунгицидов, гербицидов и нематоцидов в сельском хозяйстве, лекарственных препаратов в медицине, мономеров, пластификаторов и стабилизаторов при производстве полимерных материалов, экстрагентов, растворителей, катализаторов, добавок, придающих материалам огнестойкость, улучшающих работу смазочных масел, и др. Большое практическое значение фосфорорганических соединений стимулировало исследования в области дальнейшего развития, расширения и изучения ранее известных реакций, строения и реакционной способности органических производных фосфора, привело к открытию новых путей синтеза и ряда новых интересных реакций. К реакциям этого типа следует отнести и рассматриваемую в обзоре реакцию присоединения фосфорорганических соединений с подвижным атомом водорода фосфинов, неполных эфиров фосфористой, тиофосфористой, фосфинистой и дитиофосфорной кислот, амидов кислот фосфора, фосфорсодержащих соединений с активной метиленовой группой и некоторых других типов соединений. К настоящему времени изучены реакции присоединения их по кратным углерод-углеродным, двойным углерод-кислородной, углерод-азотной, азот-азотной и азот-кислородной связям. В результате этих реакций образуются фосфины разнообразного строения, полные эфиры фосфиновых, тиофосфиновых, дитиофосфорных кислот, алкилфосфиновые и фосфинистые кислоты, эфироамиды фосфорных и эфироимиды фосфиновых кислот, а также некоторые другие типы органических соединений фосфора. Отдельные реакции этого типа, как, например, присоединение фосфинов, фосфористой и фос-форноватистой кислот к карбонильным соединениям, были известны еще в конце прошлого — начале нашего столетия. Однако в последующие годы они или не получили дальнейшего развития, или использование их было крайне ограниченным. Интерес к этим реакциям вновь проявился лишь спустя несколько десятилетий. Ряд новых [c.9]

    Реакция. Синтез амидов кислот взаимодействием эфиров карбоновых кислот (в основном метиловых и этиловых) с аминами. Метод имеет ишрокое применение. Нуклеофильное присоединение аминогруппы к карбонильной группе эфира с последующим элиминированием спирта (после протонирования). Триэтиламин служит для получения свободного амина из гидрохлорида. [c.161]


    Перегруппировкой Гофмана называют реакцию образования первичных аминов из амидов кислот, связанную с элиминированием карбонильной группы. Эта реакция, впервые описанная Гофманом в 1881 г., заключается во взаимодействии амидов кислот с водными растворами гипогалогенитов и может быть представлена следующим уравнением  [c.93]

    Обменом карбонильного кислорода амидов кислот на агом азота г или втори гных аминов можно во многих случаях достаточно легко получить (ИЧ"/ -Е Реакция протекает в присутствии галоген ангидрид о в неорганических кислот, напри  [c.468]

    Реакцией Гофмана называется превращение амида кислоты в амнн с числом атомоп углерода на один меньше при обработке амида бромом (или хлором) и щелочью [1]. При этом происходит как бы удаление карбонильной группы из амида  [c.255]

    Производные карбоновых кислот также имеют в ИК спектрах интенсивные полосы поглощения, связанные с колебаниями карбонильной группы У эфиров полоса Ус=о расположена в области 1750—1715 см . Ангидриды кислот имеют две полосы уа=о при 1840—1780 см и 1780—1715 СМ . Полоса с=о галоидангидридов находится в области 1815—1770 см Амиды кислот характеризуются двумя полосами поглощения в областях 1680—1630 СМ (полоса амид I ) и 1650—1510 см (полоса амид П ) и полосами VNн (3500—3000 см ). [c.234]

    При замещении в амидах кислот кислорода карбонильной группы на иминогруппу получаются амид-имины кислот, или амидины [c.314]

    Гидроаммонолиз карбоновых кислот и карбонильных соединений. Гидроаммонолиз карбоновых кислот основан на двух реакциях — образования амидов кислот при действии аммиака и гидрирования амидов в амины  [c.491]

    В амидах кислот неподелеиная электронная пара азота групп —ЫНа взаимодействует (сопряжена) с я-электронами карбонильной группы  [c.175]

    Взаимодействие карбонильных соединений с азотистоводород-мой кислотой в присутствин сильных кислот сопровождается перемещением алкильной группы и образованием амидов кислот реакция Шмидта). Собственно перегруппировке предшествует обычная реакция карбонильной группы (присоединение азотистоводородной кислоты и отш.епление воды). Реакция с кетонами протекает по приводимой ниже схеме  [c.277]

    Возможность восстановления амидов с образованием альдегидов зависит от структуры амида и гидрида, а также от условий реакции. Иногда бывает достаточно смешивать реагенты в обратном порядке при низкой температуре или использовать стехиометри-ческое количество алюмогидрида лития. Но решающую роль играет электронное влияние заместителей при атоме азота. Селективное образование альдегидов из амидов кислот облегчается, если скорость нуклеофильного присоединения по карбонильной группе с образованием аминоалкоголята превышает скорость нуклеофиль- [c.137]

    Однако при усилении,положительного характера карбонильного атома углерода путем координации атома кислорода с трехфтористым бором многие карбонильные соединения (даже эфиры и амиды кислот) в безводной среде могут гладко присоединяться к р-углеродному атому этиниловых и алкиниловых эфиров и тиоэфиров [187, 204]. В этих случаях образуются а, б-ненасыщенные эфиры или тиоэфиры. [c.167]

    Амиды кислот по координирующей способности занимают первое место среди карбоксилпроизводных. Как и эфиры кислот, они имеют два координационных центра. У амидов это — атом N и атом О карбонильной группы. Однако большинство металлов (исключая платиновые) координируются с [c.172]

    Все пути синтеза пантотеновой кислоты в основном сводятся к конденсации двух компонентов а,у-Диэкси-р,р-диметилмасляной кислоты, ее эфиров или производных ср-аланином, его эфирами и солями. Сущность реакции состоит в образовании а.мидной связи между карбонильным атомом углерода и аминогруппой, поэтому она может быть осуществлена обычными методами органической химии, применяемыми для получения амидов кислот. Первоначальный синтез пантотеновой кислоты проведен конденсацией синтетического этилового эфира р-аланина с хлорангидридом ацетилди-оксикарбоновой кислоты, выделенной из гидролизата пантотеновой кислоты, с последующим точным гидролизом продукта конденсации [25] получен невысокий выход. [c.60]

    СО-группа. Карбонильная группа С=0 содержится в кетона альдегидах, кислотах, солях, эфирах и др. и характеризуется и тенсивной полосой поглощения у , в области 1740 40 см . Зн чения У(,д лежат в алифатических кетонах в пределах 1725 1705 см , в альдегидах 1740—1720 см , в сложных эфирах 1730 1710 см , в димерах кислот 1730—1680 см . В последнем случ. низкочастотный сдвиг объясняется образованием межмолекулярю водородной связи. Ионизированной карбоксильной СОСТ-группе с ответствуют также меньшие значения у — 1610—1550 см (у ) 1420—1350 см (Уд) за счет делокализации электронов связи меж, двумя атомами кислорода. ИК-спектры амидов кислот содержат д сложных колебания амид I, преимущественно у , в области 1690 1630 см и амид II, в основном 5, в интервале 1650—1515 см  [c.180]

    Фтористый бор с амидами кислот образует молекулярные соединения состава 1 1, в которых донором служит атом азота, а не карбонильный кислород, что вытекает из реакции образования сложных эфиров из соединений RGONHa BFg и спиртов. [c.75]

    Во всех других с.лучаях следует применять эквимоляр[ ые количества основаиия, особенно тогда, когда карбонильным компонентом служит производное кислоты (сложный эфир, амид кислоты, хлораигидрид кислоты]. [c.304]

    Самые реакционноспособные карбонильные соединения — хлорангид-риды кислот — могут еще взаимодействовать по Фриделю — Крафтсу в присутствии очень сильнодействующего хлористого алюминия с относительно инертными галогенбензолами, в то время как хлорметилирование формальдегидом в присутствии хлористого водорода и хлористого цинка требует уже ароматических ядер с реакционной способностью типа бензола. Формилирование амидами кислот в присутствии хлорокиси фосфора по Виль-смейеру удается гладко только с полициклическими углеводородами, фенолами, простыми эфирами фенолов и аминами. Наконец, очень инертная двуокись углерода реагирует без добавления электрофильного катализатора только с самыми реакционноспособными ароматическими соединениями — фенолятами. [c.306]

    При гидролизе (НВ — вода) таким путем образуются иминокарбоно-вые кислоты, которые немедленно превращаются в амиды кислот (345, / -> II). Карбонильная активность нитрильной группы мала (см. стр. 367), поэтому гидролиз нитрилов удается провести только при действии сильных минеральных кислот высокой концентрации (например, концентрированной соляной кислоты, 20—75%-ной серной кислоты) или при действии 10— 50%-ных растворов едких щелочей  [c.410]

    S hmidt rea tion реакция Шмидта — реакция между азотистоводородной кислотой HN3 и карбонильными соединениями, катализируемая минеральными кислотами и дающая различные продукты в зависимости от исходного карбонильного соединения так, альдегиды дают нитрилы, кетоны — амиды, кислоты— амины (в результате отщепления СО2) в случае избытка HN3 происходит циклизация с образова- [c.617]

    По методу Фишера 2,5-диарилоксазолы получают из а-галоген-замещенных карбонильных соединений и амидов кислот [30]  [c.81]

    Аминогруппа остатка лизина способна вьшолнять несколько функций. При значениях pH, близких к 7, эта аминогруппа находится в протонированной форме и обусловливает наличие катионных групп в определенных участках молекулы фермента. Кроме того, в качестве нуклеофильного центра эта аминогруппа способна к реакциям присоединения с карбонильными производньши, в том числе к образованию алд- и кетиминов, амидов кислот и т. д.  [c.428]


Смотреть страницы где упоминается термин Карбонильные из амидов кислот: [c.1201]    [c.163]    [c.122]    [c.129]    [c.223]    [c.38]    [c.1019]    [c.710]    [c.266]    [c.504]    [c.614]    [c.468]    [c.248]   
Алюмогидрид лития и его применение в органической химии (1957) -- [ c.82 , c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды кислот

ДНК и РНК кислоты карбонильные



© 2025 chem21.info Реклама на сайте