Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Делокализация связей электронная

    Органические полупроводники. К числу веществ с полупроводниковыми свойствами можно отнести ряд органических соединений с сопряженными связями, которые называются органическими полупроводниками. Чередование одинарных и кратных связей приводит к некоторой делокализации электронов, образующих соседние я-связи. Электроны могут перемещаться вдоль молекулярной цепи в пределах сопряжения связей. При сообщении энергетического импульса такому веществу делокализованные электроны перескакивают с одного сопряженного участка молекулы на другой, обеспечивая электронную проводимость по аналогии с п-полупроводником. В качестве примеров органических полупроводников можно привести следующие полимеры а) поливинилен с общей формулой Г—НС=С—П полиацетилен [c.340]


    Заместители, связанные с несущим свободную валентность атомом, также влияют, и подчас очень существенно, на активность радикала. Например, в реакции отрыва атома Н от С — Н-связи алкильные радикалы по своей активности не одинаковы и располагаются в ряд СНз- >-СНг >-СН (СНз)2 >-С(СНз)а. К сильному снижению активности радикала приводит делокализация неспаренного электрона. Такая делокализация имеет место, в частности, в бензиль-ном радикале, о чем шла речь выше. В реакции типа [c.140]

    На рис. 21-14 представлены структурные формулы некоторых производных бензола. Фенол обладает слабой кислотностью в отличие от спиртов, ароматическим аналогом которых его можно считать. Способность фенола и его производных отщеплять гидроксильный протон обусловлена тем, что в результате электроны атома кислорода принимают некоторое участие в делокализации. Связь бензольного кольца с атомом кислорода приобретает частично двоесвязный характер, а водород, частично лишенный связывающей электронной пары, легко диссоциирует. Однако кислотность фенолов обьино ниже, чем у карбоновых кислот. [c.305]

    Вследствие делокализации и -электронного облака порядок связи С==0 составляет примерно 1 /3. Длина связи со в ионе СО " 0,129 нм и является промежуточной между длиной одинарной с-о= 0,143 нм и двойной с=о == 0,122 нм связей. [c.78]

    Реакционная способность функциональных групп молекул с сопряженными связями не зависит от длины цепи сопряжения. Это явление, называемое винилогией, также очень характерно для систем сопряженных связей. Очень существенно то, что перекрывание р-орбиталей приводит к делокализации я-электронов остов молекулы с сопряженными связями становится для них волноводом, по которому они сравнительно свободно перемещаются, совершая непрерывное волновое движение. Магнитные измерения указывают, что действительно по бензольному кольцу, как в контуре сверхпроводника, циркулирует ток, создаваемый этим дви жением я-электронов. Магнитная восприимчивость в 2,5 раза ниже в плоскости кольца, чем в перпендикулярном направлении. Подобная анизотропия еще заметнее в конденсированных ароматических углеводородах, в которых система сопряженных связей образуется из большого количества бензольных колец, а также в некоторых других конденсированных системах, в частности таких, как фтало-цианины. Но особенно резко она проявляется в графите, что не [c.86]

    В дальнейшем молекулы бутадиена присоединяются в основном к четвертому атому углерода, так как в бутадиене облако я-электронов концентрируется преимущественно в области кратных связей. Однако вследствие делокализации неспаренного электрона и близкого значения энергий активации роста цепей в положениях 1,4- и 1,2- (28,8 и 31,5 кДж/моль соответственно) в некоторой мере образуются и звенья 1,2- [18]. [c.141]


    Согласно Н. Д. Соколову, при образовании водородной связи помимо чисто электростатического эффекта взаимодействия полярных связей А— Н и В—Кз происходит делокализация электронного заряда, т. е. частичный перенос заряда от молекулы донора В—К2 к молекуле акцептора —Н. Для упрощения рассмотрим только мостик А—Н...В. В связи А—Н положительный заряд на самом атоме Н мал. Но в процессе образования Н-связи электронный заряд с атома Н перетекает на атом А, тем самым высвобождая 5-орбиталь водорода для приема от атома В электронного заряда неподеленной [c.137]

    Высокая стабильность аллильного радикала объясняется сопряжением неспаренного электрона с двойной связью. Вследствие сопряжения энергия активации взаимодействия аллильного радикала с молекулой, с которой он реагирует, возрастает. Свободные радикалы, получаемые при термодеструкции компонентов ароматических концентратов и нефтяных остатков, обладающие еще большей степенью делокализации неспаренного электрона, могут иметь еще меньшую активность, чем аллильный радикал. [c.161]

    В карбонат-ионе СОз вследствие делокализации р-электронов н заряда (2—) связи приобретают частично характер двойных. Из системы молекулярных орбиталей иона СОз (рис. 26) видно, что десять электронов располагаются в, ст -и Яг"-молекулярных орбиталях и два электрона — в я5 -орби- [c.73]

    Вследствие делокализации я-электронного облака порядок связи С hj О составляет примерно 1у. Длина связи d o в ионе С0  [c.72]

    Однако применение законов кинетической теории газа к электронному газу приводит к значению а, отличающемуся от эксперимента. Делокализация валентных электронов-в кристаллической решетке металла, а следовательно, отсутствие в ней направленных валентных связей объясняет тот факт, что металлы имеют большое координационное число К, плотнейшую сферическую упаковку, а также чаще всего кубическую объемно-центрированную элементарную ячейку решетки. Некоторые металлы могут кристаллизоваться в различных типах решеток например, при температуре <768 °С магнитное -железо имеет /( = 8, а при температуре >906 °С устойчивым является немагнитное у-железо с /С=12. Впрочем, для некоторых тяжелых металлов наряду с металлической связью, образованной З -электронами, реализуются слабые ковалентные связи между атомами, в то время как 45-электроны образуют электронный газ. Для такой смешанной металлической и межатомной связи характерно образование пар электронов как с параллельными, так и с антипараллельными спинами (для марганца— антипараллельные, для железа — параллельные). Этим объясняется различие в магнитных свойствах металлов параллельные спины обусловливают ферромагнетизм, т. е. положительная магнитная восприимчивость на два или три порядка [c.138]

    Величина константы СТВ, т. е. расстояние между линиями в мультиплетах, характеризует степень делокализации неспаренного электрона и зависит от спиновой плотности на ядрах. Спиновая плотность — это не то же, что плотность неспаренного электрона. Дело в том, что его орбиталь может поляризовать спины спаренных электронов на прилежащей ст-связи, т. е. каждый из них будет несколько больше относиться к одному из связанных атомов, чем к другому. Поэтому на каждом из ядер будет некоторая спиновая плотность, даже на том, на котором нет плотности неспаренного электрона. [c.62]

    Свойства кластеров сильно зависят от числа входящих в них частиц, что объясняется особенностями их совместного действия. В частности, с ростом числа частиц в кластерах из нескольких атомов металла происходит делокализация валентных электронов и при пяти-шести атомах возникают состояния, отвечающие электронным зонам массивного металла, хотя степень делокализации электронов меньше, чем в большом кристалле. При этом работа выхода электрона имеет промежуточное значение между работой выхода электрона массивного металла и потенциалом ионизации одиночного атома. Изменчивость свойств кластеров касается и химических связей, характер которых зависит от вида и числа частиц ядра и окружающей среды. [c.360]

    Связь является нелокализованной, если электрон или электроны осуществляют связь более чем между двумя атомами. Такая делокализация связи была показана на примере молекулы азотной кислоты (см. гл. III, 2). [c.72]

    После образования пептидной связи электроны двойной связи С=0 дело-.кализуются на пептидную связь С—Ы, которая становится частично двоесвязной. Это вынуждает пептидное звено (рис. 21-13) оставаться плоским. Пептидное звено является краеугольным камнем всех белковых структур и представляет собой один из важнейших примеров делокализации я-связи в химических системах. [c.300]

    Появление эффекта сверхтонкой структуры связано с взаимодействием магнитного момента неспаренного электрона с магнитным моментом ядра. Сверхтонкое взаимодействие представляет больщой интерес для ЭПР-спектроскопии, поскольку получаются характерные спектры, по которым можно проводить идентификацию парамагнитной частицы, а также получать сведения о делокализации неспаренного электрона по парамагнитному соединению. [c.207]


    Если бы для аллила была справедлива классическая формула СН2 = = СН—СН2 с локализованной двойной связью, то, как и в этилене,. I), составила бы —2р. Выигрыш энергии при существующей в аллиле делокализации я-электронов, называемый энергией делокализации, составит [c.220]

    Одна из особенностей соединений, содержащих сопряженную систему двойных и простых связей,— способность передавать влияние заместителей практически без затухания по всей системе, что,. очевидно, является следствием делокализации р -электронного облака (наличие обобщенного ря-электронного облака), и его более легкая поляризуемость по сравнению с о-электронным облаком. [c.136]

    Самый простой способ оценки ароматичности заключается в расчете энергии делокализации ОЕ, или энергии резонанса, т. е. разности между полной электронной энергией молекулы и энергиями изолированных двойных связей, включенных в состав молекулы. Эта разность характеризует выигрыш в энергии (стабилизация молекулы) за счет делокализации тг-электронов  [c.304]

    Энергией делокализации называется разность между полной п-электронной энергией молекулы, и энергиями изолированных двойных связей, включенных в состав молекулы. Эта разность характеризует выигрыш в энергии (стабилизации молекулы) за счет делокализации я-электронов  [c.243]

    Некоторая делокализация л-электронов характерна для всех полиенов — молекул типа Н(—СН = СН—СН = СН—) пН с сопряженными двойными и простыми связями. В таких системах создается возможность последовательного одностороннего смещения л-электронов под влиянием изменения электрического состояния любого атома углерода, вызываемого замещением связанного с ним атома водорода на какой-либо другой атом или радикал. Эффект такого замещения может, следовательно, передаваться по всей системе сопряженных связей, т. е. выявляться и на удаленных от данного атома углерода ее участках. Напротив, при отсутствии сопряжения (например, в цепи насыщенных углеводородов) эффект замещения сказывается лишь на немногих ближайших атомах, т. е. очень быстро затухает. [c.550]

    Делокализация — состояние системы, в которой связующие электроны не локализуются между двумя соседними атомами, а равномерно распределены между несколькими атомами. [c.372]

    Существуют два способа изображения структуры ароматических соединений в виде формулы с сопряженными двойными связями (разд. 3.6) или в виде цикла со вписанной окружностью, символизирующей делокализацию я-электронов. Так, структуру молекулы бензола можно изобразить с помощью любой из трех приведенных ниже равноценных формул  [c.66]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]

    В молекуле пентаборана Вг,Н. электроны делокализованы в еще большей степени и образуют пятицентровую связь. В молекуле В,-Не (рис. 182) из 24 электронов десять используются на образование пяти двухцентровых связей В—-I, восемь—на образование четырех трехцентровых связей В-----Н-----В, а остальные шесть электронов участвуют в построении пятицентровой связи, охватывающей остов из пяти атомов бора. Вследствие делокализации связи координационное число бора в пентаборане достигает шести. [c.442]

    Сравнительную легкость образования свободных радикалов этими соединениями можно объяснить следующим образом. В полиарилэтане центральная С—С-связь ослаблена вследствие делокализации валентных электронов этой связи, обусловленной их взаимодействием с я-электронами ароматических колец. [c.41]

    Свободные радикалы, получаемые при деструкции компонентов нефтяных остатков, обладающие еще большей степенью делокализации неспаренного электрона, будут иметь еще меньшую активность, чем аллильный радикал. Такой вывод соответствует взглядам [2, 21], согласно которым из молекул с наибольшей активностью (в нашем случае смол, асфальтенов) получаются при разрыве двойной связи соответствующие радикалы с пониженной активностью. Разумеется, это не исключает возможности образования при распаде нефтяных смол и асфальтенов и активных свободных радикалов (СНз, СзНт и др.). Следовательно, прн распаде компонентов нефтяных остатков в зоне реакции одновременно существуют свободные радикалы различной активности, приводящие к конкурирующим реакциям, что в конечном счете обусловливает получение разнообразных продуктов. [c.85]

    Высокая концентрация ПМЦ с одной стороны и наличие компонентов с разветвленной системой двойных связей, а тагаю участков с делокализацией 5 -электронов означает возможность применения асфальтосмолистых олигомеров в качестве стабилизаторов полимеров и шгастмаос в процессах термической, фотохимической и радиохимической деструкции. [c.58]

    В синтезе грамицидина 8 участвуют два фермента легкий (М = 100 000) и тяжелый (Л4 = 280 ООО), Синтез начинается иа легком ферменте, который действует также как рацемаза , превращая ь-фенилаланин в о-энантиомер. Нуклеофильная тиольная [руппа легкого фермента атакует активированный фенилаланин (АТР и аминокислота реагируют с образованием ангидрида), образуя (катализ основанием) высокоэнергетическин тиоэфир, ДСп1др —38 кДж/моль (—8 ккал/моль). Различие свойств тио-эфиров и ацильных эфиров связано с гораздо большей степенью делокализации неспаренных электронов кислородом карбонильной группы, чем атомом серы. Такая делокализация понижает электрофильность карбонильной группы. Кроме того, тиольная группа — более хорошая уходящая группа, чем соответствующая гидроксильная. Напомним, что для меркаптана рКа Ю, тогда как для спирта рКа 15 (табл. 2.1). [c.62]

    Это связано с тем, что у вторичных и третичных радикалов про исходит частичное распределение - делокализация неспартного электрона на два и фи соседаих атома угле,рода. [c.64]

    Две оставщиеся рг-орбитали вместе образуют так называемую молекулярную орбиталь л-связи. Поскольку рг-орбитали направлены перпендикулярно к я-связи, которую они образуют, их перекрытие меньше, чем в случае орбиталей ст-связи. Точно так же области максимального перекрытия лежат вне плоскости (ху) между атомами С, выше или ниже последней. Благодаря подобной ориентации рг-орбиталей взаимодействие между сопряженными л-связями настолько велико, что, по существу, происходит делокализация л-электронов. С учетом конфигурации л-связи легко понять, что поворот группы вокруг мульти-плетных связей запрещен [1с]. [c.100]

    В зависимости от степени обобществления электронной плотности химической связи между несколькими атомами различают локализованную и делокализо-ванную химическую связь. Локализованной связью называется такая химическая связь, электронная плотность которой сконцентрирована (локализована) в пределах двух наиболее близко расположенных друг к другу ядер атомов. Если электронная плотность химической связи распределена между тремя и более ядрами, то такая связь называется трехцентровой, многоцентровой, а в общем случае — делокализованной. Характер делокализации электронов химической связи может, в свою очередь, различаться по размерности пространства. Существуют связи, делокализованные в одном измерении, делокализованные в плоскости и делокализованные в трехмерном пространстве. Хорошо известная металлическая связь с позиций изложенной классификации является короткодействующей и дальнодействующей, неполярной, в высшей степени делокализованной (в трех измерениях) связью. [c.114]

    Поскольку в присутствии катализаторов давление и температура синтеза алмаза сильно уменьшаются, высказаны гипотезы, каким образом металлы-катализато-ры облегчают перестройку одной структуры в другую. Одной из них является следующая. При высоких давлении и температуре из графита и металла-катализатора образуется металлографитовый комплекс, где атомы металла располагаются между углеродными сетками графита (этот комплекс можно представить как нестойкий карбид). Этот процесс может происходить как с твердым металлом, так и с жидким в последнем случае гораздо быстрее. Слдеует отметить, что термодинамическая устойчивость графита обусловлена главным образом делокализацией рг-электронов (с этим связана электронная проводимость графита) — остальные валентные электроны углерода (х, рх, ру) образуют устойчивую зр -гибридизированную конфигурацию. При отсутствии выигрыша энергии из-за делокализации электронов более выгодной с термодинамической точки зрения была бы тетраэдрическая 5р -гибридизированная конфигурация, т. е. конфигурация электронов в алмазе. Поэтому нарушение делокализации электронов в графите снижает его термодинамическую устойчивость. При внедрении атомов металла-комплексообразователя между углеродными слоями графита их внешние электроны (все металлы-катализаторы алмазного синтеза являются переходными металлами с недостроенными й-орбиталя-ми) взаимодействуют с делокализовакными электронами углерода, что уменьшает подвижность последних. Поэтому устойчивость структуры графита резко снижается. Высокое давление сближает плоские углеродные сетки, и становится возможным перекрывание орбиталей электронов у атомов углерода в соседних сетках (слоях). Это может привести к возникновению ковалентных связей между атомами в разных сетках, так как устой- [c.139]

    Больший угол между связями (110,8°) у ОзО по сравнению с угла ми в Р2О (103,2°) и в Н2О (104,5°) может также быть объяснен делокализацией несвязывающих электронов атома кислорода, р результате чего появляются резонансные структуры типа [c.227]

    То, что в S I2 угол связи уже равен 102°, подтверждает это положение, так как больший атом серы не имеет той же тенденции к делокализации несвязывающих электронов. Дальнейшее подтверждение тенденции кислорода к образованию частичных двойных связей с атомами, имеющими незаполненные уровни, или с ароматическими сопряженными системами следует из экспериментальных данных для большого числа молекул типа X—О—X. Например, если X—алифатическая группа, то углы С—О—С [c.227]

    Таким образом, делокализация тг-электронов понижает энергию системы, делает молекулу аллила устойчивее на величину 0,82р, чем если бы в ней существовала рсзоли-рованная я-связь. Вернемся к волновой функции аллила. Найдем по (46.2) коэффициенты,с,, Сх и сз для всех трех орбиталей  [c.221]

    Н. Д. Соколов, разработавший квантовомеханйческую теорию водородной связи на основе ВС-метода. Согласно Соколову [32], [к-31], при образовании водородной связи помимо чисто электростатического, ориентационного, эффекта происходит делокализация электронного заряда, т. е. частичный перенос заряда от молекулы донора В—Кг к молекуле акцептору К]—Н. Такой перенос электронного заряда дополнительно понижает энергию системы и приводит к образованию комплекса. Для упрощения рассмотрим только мостик А—Н ..В. В связи А—Н положительный заряд на самом атоме Н мал. Но в процессе образования Н-связи электронный заряд с Н-атома перетекает на атом А, тем самым высвобождая х-орбиталь водорода для приема от атома В электронного заряда неподеленной пары, который и свяжет атомы Н и В водородной связью. При этом высвобождение. -орбитали атома Н оголяет протон. Поле протона велико, и притяжение им электронного заряда атома В весьма эффективно, в то же время других своих электронов около протона нет, и поэтому отталкивание молекулы ВК от К1АН в области атома Н сильно понижается. Оба эти результата [c.268]

    Металлическая связь существенно отличается от ковалентной сзязи. В случае металлической связи электроны равномерно распределены между положительными центрами, а в случае ковалентной сосредоточиваются (локализуются) в определенных областях пространства. Металлическая связь в 3—4 раза менее прочна (следствие делокализации), чем одинарная ковалентная связь. [c.50]


Смотреть страницы где упоминается термин Делокализация связей электронная: [c.85]    [c.87]    [c.177]    [c.19]    [c.145]    [c.212]    [c.273]   
История стереохимии органических соединений (1966) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Делокализация

Делокализация связей

Делокализация электрона

Электрон связи



© 2025 chem21.info Реклама на сайте