Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активация мишени

    Возвращаясь к случаю применимости приближенной формулы (3-18), т. е. к случаю, когда и N Ыо, рассмотрим некоторые количественные соотношения для побочных процессов, имеющих место при получении отдельных радиоактивных изотопов методом нейтронного облучения. Если в результате активации мишени котловыми нейтронами образуется радиоактивный изотоп, дающий начало радиоактивной цепочке, то нарастание активности дочернего изотопа рассчитывается по формуле  [c.665]


    При активации мишеней, содержащих естественную смесь атомов двух или нескольких стабильных изотопов одного элемента, иногда одновременно образуются различные радиоактивные изотопы того же элемента. Отношение их активностей определяется выражением  [c.667]

    Активация мишени в результате структурных изменений путем взаимодействия ее с лекарственным препаратом, образования метаболитов или взаимодействия с другими биологическими веществами, иными, чем рецептор или фермент, приводящая к фармакодинамическому ответу. [c.20]

    Если сечение поглощения значительно больше, чем сечение активации (графа 10), то большая часть нейтронов поглощается с образованием стабильного, а не интересующего нас радиоактивного изотопа. При этом имеет место экранирование внутреннего объема мишени ее наружными слоями, что приводит к уменьшению величины полезного потока нейтронов. В подобных случаях необходимо применять мишень а виде тонкой фольги. [c.543]

    Для учета вклада конкурирующих реакций при определении V, Сг, Мп и Ге в металлическом никеле проводят двукратную активацию пробы в генераторе быстрых нейтронов с Н-содержащим замедлителем толщиной 4,3 см между пробой и мишенью генератора и без такого замедлителя [954]. Разработан метод определения а, А1, Р и Сг в движущемся потоке водного раствора [612]. [c.113]

    Конечный биохимический эффект зависит также от синергизма или антагонизма гормональных воздействий на клетки-мишени. Так, адреналин — гормон мозгового слоя надпочечников и глюкагон — гормон поджелудочной железы обладают сходным биохимическим действием активацией распада гликогена в печени. Примером антагонистического действия могут служить эстрогены и прогестерон — женские половые гормоны, причем эстрогены усиливают сокращение матки, а прогестерон тормозит ее. [c.133]

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]


    Когда хелперные Т-клетки узнают свой антиген, они активируются и начинают продуцировать цитокины (специальные молекулы, секретируемые лимфоцитами и осуществляющие межклеточные взаимодействия при иммунном ответе). Если антиген был ассоциирован с МНС класса 1, то активированные Тх-клетки секретируют цитокин, который называют интерлейкин-2, способствующий активации и клонированию цитотоксических (киллерных) Т-клеток, имеющих сродство к данному антигену. Цитотоксические Т-клетки взаимодействуют только с клетками, у которых чужеродный антиген ассоциирован с МНС класса 1. Т-лимфоцит взаимодействует с константным участком МНС-1 и, таким образом, связывается с клеткой-мишенью. [c.479]

    Для активации элементов применяют бомбардировку их частицами большой энергии протонами, дейтронами, а-частицами или нейтронами. В качестве источников протонов, дейтронов с большими энергиями применяют различные ускорители заряженных частиц—циклотроны, фазотроны и другие. Помещая в мишень такого прибора исследуемый объект, через определенное время получают активированный материал. Для получения потока нейтронов для активации применяют полоний-бериллиевый источник нейтронов. Активность материала зависит от времени облучения и должна быть при выполнении определения строго стандартизирована. [c.520]

    Из формулы (23) следует, что число атомов образующегося радиоактивного изотопа зависит от числа атомов активируемого элемента в мишени, от содержания активируемого изотопа в облучаемой смеси изотопов данного элемента, от интенсивности нейтронного потока, сечения активации, времени облучения и постоянной радиоактивного распада. [c.22]

    Как и в случае облучения в реакторе, следует обратить осо бое внимание на возникновение радиоактивных загрязнений, связанных с активацией примесей, содержащихся в мишени. С этой точки зрения целесообразно производить облучение только тех [c.31]

    Ввиду малой проникающей способности заряженных частиц они не могут быть использованы для активационного анализа в тех случаях, когда необходима равномерная активация по всему объему мишени, а не только в поверхностном слое. В этом случае может оказаться целесообразным использовать облучение нейтронами в качестве вспомогательной ядерной реакции, приводящей к образованию заряженных частиц. Эти частицы и применяются для активации. Так, например, происходит при определении кислорода по реакции 0 Т, n)F .  [c.140]

    Для активации применяют наряду с тепловыми нейтронами также быстрые нейтроны. Для получения пучка быстрых нейтронов с энергией 14,5 Мэе Колеман [392] производил бомбардировку циркониевой или титановой мишени, насыщенной тритием, Дейтонами от высоковольтного генератора, в частности от ускорителя Кокрофта— Уолтона. При этом протекает ядерная реакция  [c.163]

    Способ получения изотопа также играет известную роль при выборе изотопа. Радиоактивные изотопы, полученные в результате активации медленными нейтронами или заряженными частицами низкой энергии, более свободны от радиоактивных примесей, чем изотопы, полученные облучением мишени высокоэнергетическими частицами,так как в последнем случае вероятность конкурирующих ядерных реакций значительно выше. Кроме того, при постановке некоторых исследований не безразлично, будет ли исходный радиоизотоп с носителем или без него. [c.164]

    Заключение. 1. Реакторный метод накопления радионуклидов — метод, основанный на поглощении нейтронов в материале мишени, — является основным способом получения большинства препаратов, находящих в настоящее время широкое применение в различных отраслях промышленности, сельском хозяйстве, медицине, при проведении научных исследований. Главными радионуклидами, получаемыми реакторным методом, являются Мо (продукт деления (активация металлических мишеней из [c.513]

    Возможности и перспективы радиационной химии. Радиацион ная химия имеет уже более чем 25-лстний стаж развития. Начало ее было положено применением и. )лучения для облагораживания полиэтилена. В настоящее время в мире используется около 40 промышленных методов радиоактивного излучения. Ввиду того, что активация реагентов практически любыми лучами не обладает селективным действием, она применяется в тех случаях, когда мишенью оказывается не фрагмент молекулы, т. е. та пли иная химическая связь, и даже не молекула, а макротело. Таковыми могут быть, например, тот же полиэтилен или поливинилхлорид, которые при облучении приобретают большую термостойкость и твердость благодаря сп1иванию их линейных макромолекул в трех- мериукз сетку. [c.237]

    На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспе-цифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита (например, фармакофорной группировки) его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей - водородных, электростатических, ван-дер-ваальсовых, гидрофобных. [c.13]


    И. а. используют при определении элементов изотопного разбавления методом, а также в активац. анализе. В последнем случае в исследуемом образце генерируют долгоживущие или стабильные изотопы путем облучения нейтронами в реакторе концентрацию исходного элемента-мишени вычисляют по результатам И. а. облученного образца (относит, стандартное отклонение 0,2-0,5% пределы обнаружения 10 -10 г). [c.198]

    КОМПЛЕМЕНТ (система комплемента) (от лат. omple-mentum-дополнение), группа глобулярных белков сыворотки крови животных и человека, представляющих собой часть иммунной системы организма. При попадании в организм ипфищ1рующих его бактерий или вирусов, нек-рых токсинов или возникновении собственных трансформированных клеток происходит активация К, в результате чего клетки-мишени лизируются (разрушаются), а токсины и вирусы нейтрализуются. Поэтому систему К. рассматривают наряду с макрофагами как передовой рубеж иммунной защиты организма. [c.441]

    В механизме действия П. (как и мн. др. пептидно-белковых гормонов) на его начальном этапе принимают участие специфич. рецептор плазматич. мембраны клетки-мишени, аденилатциклаза, циклич. аденозинмонофосфат (цАМФ) и протеинкиназа. Активация аденилатциклазы (при воздействии П. на рецептор) приводит к образованию внутри клеток цАМФ, к-рый активирует фермент протеинкиназу, осуществляющую фосфорилирование функционально важных белков, и таким образом запускает ряд биохим. р-ций, обусловливающих в конечном счете физиол. эффект гормона. [c.446]

    Исследования нейропептидов на новом уровне начались с выделения из нервной ткани и установления последовательности нескольких эндогенных пептидов, стереоспецифически связывающихся с опиатными рецепторами или вызывающих активацию определенной цепи внутриклеточных событий и соответствующий ответ клетки-мишени (т.е. агонистов) или уменьшающих и устраняющих такой ответ (антагонистов). В 1924 г. Р. Абелем в ткани мозга были обнаружены два активных пептида -окситоцин и вазопрессин, ответственных, как выяснилось значительно позднее, за антидиуретический, вазопрессорный и некоторые другие эффекты. В 1953 г. В. Дю Виньо впервые осуществил их химический синтез, а таюке вазотоцина и мезотоцина. Выделению эндогенных нейропептидов непосредственно предшествовало открытие в начале 1970-х годов в нервной ткани рецепторов, избирательно связывающих морфин, кодеин и другие экзогенные опиаты [115-117]. Следовательно, дальнейший поиск велся целенаправленно в его основе лежала идея о необходи- [c.336]

    Сравнивая медленную бесфакторную транслокацию с быстрой EF-G GTP-катализируемой транслокацией, важно отметить, что фактор, по-видимому, не снижает заметным образом тепловую энергию активации процесса это наводит на мысль, что здесь катализ имеет преимущественно энтропийную природу. Ингибиторный анализ также показывает, что фактор не создает нового реакционного пути, идущего через промежуточные стадии в обход высокого активационного барьера, как это делает обычный энтальпийный катализатор самые различные специфические ингибиторы транслокации (виомицин, спектиномицин, эритромицин, неомицин, канамицин, гентамицин, гигромицин В) действуют как на энзиматический, так и неэнзиматический процесс, указывая на существование одинакового транслокационного механизма, с одними и теми же мишенями в обоих случаях. Следовательно, фактор элонгации катализирует процесс, скорее всего, путем создания лучших пространственных условий в рибосоме для того же самого, присущего рибосоме как таковой, транслокационного пути. Одним из способов сделать это могла бы быть простая фиксация одного из термически флуктуирующих под-состояний рибосомы, которое было бы благоприятно для транслокации. Такой фиксирующий или ориентирующий эффект присоединения EF-G как крупного дополнительного лиганда рибрсомы кажется вероятным. [c.204]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    ДЛЯ определения содержания хрома нашел метод активации тепловыми нейтронами. В табл. 13 приведены ядерно-физические свойства изотопов хрома и сечения реакций на нейтронах [42]. При нейтронно-активационном анализе с использованием ядер-ных реакторов хром определяют по реакции (п, y) r. Конкурирующей реакцией является Ре (п, а) Сг, однако вследствие значительно более низкого сечения данной реакции (б 100 мбарн) и низкой распространенности изотопа Ре (5,84%) ее вклад несуществен. Так, при анализе горных пород он составляет 0,1—0,2% от содержания в них хрома [642]. Анализ железных метеоритов (—92% Ре) показывает, что при двухнедельном облучении потоком 1,4 10 нейтр1 см -сек) вклад указанной реакции составляет всего лишь 1-10 г/г [1051]. При анализе свинца высокой чистоты найдено, что 3,5-10 г железа будут давать такую же активность, как и 3 10 г Сг (предел обнаружения) [63], Радиохимические методы. При радиохимическом анализе облученных мишеней используют различные наиболее селективные способы разделения и очистки фракций определяемых элементов [239]. Широкое внедрение гамма-спектрометрической техники (см., например, [224, 235, 904]) позволяет существенно сократить, число операций очистки выделяемых фракций. Во многих случаях производят только групповое разделение или отделение элемента основы [95, 175, 618, 1066]. Этому способствует и то обстоятельство, что активность Сг, имеющего большое время жизни (см. табл. 13), обычно измеряют через 2 и более дней после конца облучения, когда все короткоживущие радиоизотопы уже распались. В табл. 14 приведены некоторые примеры радиохимических вариантов нейтронно-активационного определения хрома в различных объектах. Очень часто используют экстракционные методы. Для примера приведем методику нейтронно-активационного определения микропримесей Сг, Мп, Со, N1, Си и 2п в арсениде галлия высокой чистоты [531]. [c.100]

    Предложено определение кальция при активации образцов а-частицами и измерении р-активности Зс, образующегося по реакции Са (а, р) 3с. При этом учитывается аннигиляцион-ное 7-излучение с помощью 7-спектрографа [1359, 1367]. Максимальный выход 3с наблюдается при облучении мишеней а-частицами с энергией 14 Мэе. Чувствительность определения кальция составляет 8,5 10 г. Мешают определению кальция К и Зс. Метод использован для определения кальция в высокочистых кремнии и алюминии и окислах тория, иттрия и магния. Активация а-частицами применена также для определения кальция в биологических материалах [1335]. [c.110]

    Мы уже сталкивались с примерами использования природных токсинов в качестве инструментов для исследования ключевых нейрохимических механизмов или для выделения важных молекул нервной системы (см. с. 146). Здесь приводится еще один пример такой технологии . Регуляторные N-белки являются мишенью действия ряда бактериальных экзотоксинов. Как уже указывалось на с. 52 и на рис. 9,14,6, токсин холеры поддерживает постоянную активность аденилатциклазы путем активирования Ns. Механизм этого эффекта основан на ADP-рибози-лировании, т. е. переносе ADP-рибозы с NAD на а-субъединицу Ni. Следствием такой ковалентной модификации является диссоциация Ns на субъединицы, причем субъединицей, взаимодействующей с аденилатциклазой, на стадии активации фермента является as. В интактном Ns-комплексе этому препятствует -субъединица, и именно выделение as при диссоциации Ns и приводит к активации аденилатциклазы. [c.279]

    Фотоядерный активационный анализ (ФАА) имеет ряд преимуществ перед другими физическими методами анализа элементного состава вешества и, в некоторых случаях, перед нейтронным акгавационным анализом (НАА). Это, прежде всего высокая селективность метода и сравнительно слабая активация матриц мишеней, состоящих в основном из легких элементов (С, N5 [c.59]

    Биохимические функции. ПТГ действует на клетки-мишени по мембрано-опосредованному механизму, причем это действие реализуется в почках, костной ткани и кишечнике. В клетках почечных канальцев, богатых рецепторами к ПТГ, происходит активация аденилатциклазы, а также синтез цАМФ, который активирует протеинкиназу и участвует в регуляции транспорта ионов Ка , К" " и Са " через клеточные мембраны. ПТГ оказывает множественное действие на костную ткань. Он опосредованно активирует ферменты коллаге-назу и глюкуронидазу, что вызывает деструкцию органических компонентов кости, в частности коллагена и гликозамингликанов. В минеральных компонентах костной ткани под действием ПТГ происходит солюбилизация гидро- [c.153]

    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Активацию проводили потоком нейтронов (с энергией выше 0,4 Л1эв), полученных облучением кадмиевой мишени дейтронами (2. Мэа) на ускорителе Ван де Грааффа. Метод заключается в многократном повторгнии облучения и измерения, что повышает статистическую точность. [c.48]

    Токсическое действие. Для проявления токсических и канцерогенных свойств нитрозоамины требуют активации в организме до электрофильных соединений под действием ферментов. Предполагается, что активными метаболитами Л -нитрозоаминов с короткой углеводородной цепочкой являются диазоалканы. Молекулой-мишенью при действии веществ этой группы является ДНК. 10 % общего количества вещества, связывающегося с ДНК, приходится на алкилирование атома кислорода в положении 6 гуанина, что, по-видимому, определяет канцерогенное действие. Л -Нитрозоамины, вызывая повреждение эндоплазматического ретикулума, резко угнетают синтез белка в печени. Их взаимодействие с ДНК, РНК и белками клеток вызывает разного рода дистрофии и гибель большей части клеточных популяций. Установлено иммунодепрессивное действие Л -нитрозоаминов на специфические и неспецифические иммунные системы организма. [c.709]

    Если эффект самоэкранировки для образца и стандарта неоди наков, то неизбежны ошибки активационного определения, в особенности, когда изучаемые образцы и эталон сильно различаются по составу. Теоретический расчет самопоглощения в большинстве случаев затруднителен, так как явление это зависит от многих факторов — формы, плотности, состава, веса образца и т. д. Эффект самопоглощения может быть снижен путем использования для облучения тонких мишеней или применения инертных разбавителей с малым сечением активации (например, окись магния и др.). [c.141]

    Интенсивность потока нейтронов генератора НГ-160 при использовании реакции Н (й, п) Не достигает 10 нейтрон/сек. Замедление быстрых нейтронов происходит в воде, которой заполняют бак с вмонтированным внутри мишенным устройством генератора. Получаемый поток тепловых нейтронов составляет примерно 10 нейтрон см х хсек). Распределение потока тепловых нейтронов в воде в зависимости от расстояния от мишени нейтронного генератора было изучено Мейнке и др. [66] по активации золотой фольги (рис. 8). Максимальный поток тепловых нейтронов получается на расстоянии 3—5 см от м ишени. [c.48]

    В. А. Кочеванов и Р. А. Кузнепов [136] с помощью бетатрона на 25 Иэе с в]1утренней мишенью получили чувствительность определения кислорода в бериллии и алюминии, равную 10 3 % При определении кислорода в титане чувствительность из-за активации самой основы составила 10-2 [c.94]

    Круг материалов, которые можно облучать в ускорителях, расширяется, если охлаждать мишень проточной водой или использовать вращающиеся мишени. Тем не менее активацию заряженными частицами нельзя применять для легкоплавких или термически нестойких материалов, например органических. Для облучения этих материалов приходится уменьшать поток заряжеьп ых частиц, что вызывает соответствующую потерю чувствительности. [c.104]

    Центральный компонент этого протеолитического каскада-СЗ, и его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. СЗ может быть активирован двумя разными путями-класснческ1ш и альтернативным. В обоих случаях СЗ расщепляется ферментным комплексом, называемым СЗ-конвертазон. Два разных пути приводят к образованию разных СЗ-конвертаз, однако обе онн образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. СЗ-конвертаза расщепляет СЗ на два фрагмента, больший нз которых (СЗЬ) связывается с мембраной клетки-мишени рядом с СЗ-конвертазой в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью- S-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса нз поздних компонентов-от С5 до С9 (рнс. 17-49). [c.46]

    Активация субкомпонента lq комплекса С1 активирует С1г, который приобретает протеолитическую активность и в свою очередь расщепляет и тем самым активирует ls. Затем активированный ls последовательно расщепляет С4 и С2 активированный С4 сразу связывается с ближайшей мембраной, после чего присоединяет к себе активированный Z В результате получается комплекс С42, который представляет собой СЗ-конвертазу классического пути. С42 расщепляет СЗ с образованием двух фрагментов, СЗа и СЗЬ. Фрагмент СЗЬ быстро связывается с мембраной-мишенью вблизи С42 с образованием комплекса С42,ЗЬ, т.е. С5-конвертазы классического пути. Эта коивертаза расщепляет С5 на С5а и СЗЬ. Фрагмент С5Ь соединяется с С6, в результате чего инициируется сборка поздних компонентов с образованием литического комплекса (рис. 17-51). [c.47]


Смотреть страницы где упоминается термин Активация мишени: [c.542]    [c.360]    [c.95]    [c.504]    [c.194]    [c.275]    [c.480]    [c.245]    [c.131]    [c.83]    [c.87]    [c.51]    [c.513]   
Радиохимия и химия ядерных процессов (1960) -- [ c.665 , c.667 ]




ПОИСК







© 2025 chem21.info Реклама на сайте