Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы присоединение галогена

    Порядок присоединения галогеноводородных кислот к двойной связи зависит от ряда факторов, в первую очередь, как и в случае ионного гидрогалогенирования, от устойчивости свободного радикала. Атомарный галоген атакует тот атом углерода при двойной связи, в результате присоединения к которому образуется наиболее устойчивый промежуточный радикал. Устойчивость радикала растет с увеличением числа групп, связанных с радикальным атомом углерода. Причина этого явления, по-видимому, заключается в увеличении возможности сопряжения свободного электрона с электронными облаками соседних С—Н-связей и, следовательно, в возрастании степени его делокализации. Естественно, что активность сво- [c.65]


    Порядок присоединения галогеноводородных кислот к двойной связи зависит от различных факторов. Во-первых, как и в случае ионного гидрогалогенирования, от устойчивости свободного радикала. Атомный галоген атакует тот атом углерода при двойной связи, в результате присоединения к которому образуется наиболее устойчивый промежуточный радикал. Устойчивость радикала растет с [c.63]

    Присоединение галогенов, таких как бром и хлор, хорощо проходит практически к любым кремнийорганическим соединениям, содержащим кратную связь [47, 63, 117, 124, 125, 129, 166, 196,207, 209, 235—237]. В некоторых случаях требуется незначительная активация светом. Если кремнийорганическое соединение содержит винильный радикал или радикал с а-положением кратной связи, то образуются а,р-дигалоген-алкилсиланы, которые довольно термически устойчивы и могут быть выделены перегонкой в чистом виде  [c.184]

    Для УВ радикала ненасыщенных карбоновых кислот характерны реакции присоединения, окисления, полимеризации. Наиболее важными из реакций присоединения являются гидрирование и присоединение галогенов  [c.638]

    Изучение различных радикальных реакций с участием низших алканов служит основой для моделирования механизма процессов превращения сложных алканов. Это обусловлено тем, что, начиная с некоторой длины цепи радикала или молекулы, кинетические и термодинамические характеристики однотипных реакций замещения, присоединения или распада практически слабо зависят от природы радикалов. Аналогичная картина наблюдается для процессов с участием сложных соединений других классов (галоген-производных, спиртов, альдегидов, кетонов и кислот). [c.214]

    Присоединение по радикальному механизму протекает через образование наиболее устойчивого свободного радикала. Радикал (1) в результате сопряжения свободного электрона с электронами пяти С—Н-связей будет более устойчивым, чем (2). При его взаимодействии с галогеном образуется дигалогенопроизводное  [c.68]

    Для получения продуктов 1 1-присоединения в условиях радикального цепного процесса были успешно использованы разнообразные соединения типа А—В [75]. Протеканию таких реакций присоединения благоприятствует проведение их в неполярных растворителях или в газовой фазе. Присоединение ускоряется светом, добавками радикальных инициаторов и нагреванием. Большинство присоединяющихся молекул относятся к типу А—Н или А—галоген, где А —относительно устойчивый свободный радикал. Для успешного завершения стадии переноса цепи в, которая представляет собой замещение В в А—В радикалом (76), необходимо, чтобы В было простой частицей, такой, как водород или галоген. Другим фактором, увеличивающим соотношение между [c.214]


    Под названием радикал здесь имеется в виду совсем иное по сравнению с тем, что понимали под радикалом сторонники теории радикалов. Желая особо подчеркнуть это, О. Лоран стал употреблять вместо термина радикал термин ядро . Ядро О. Лорана не представляло уже органического атома, как радикалы Ю. Либиха и Я. Берцелиуса, неразрывно связанные с электрохимической теорией. Они изменчивы — фундаментальные ядра могут путем замещения водорода, например галогенами, превращаться в новые ядра (с меньшим содержанием водорода). Помимо замещения, О. Лоран допускал и присоединение к ядрам различных атомов. Так, этилен присоединяет к себе хлор и бром, а также и кислород. Теория ядер была положена в основу классификации органических соединений по конституции их ядер. Он пытался представить ядра в виде геометрических фигур (призм, кубов) для наглядного объяснения перехода фундаментальных ядер в производные. Эта теория оказалась промежуточным звеном в развитии представлений о конституции тел. Она была положена в основу учения о типах органических веществ, ознаменовавшего дальнейшее развитие представлений о конституции. [c.108]

    Продукты радиолиза образуются здесь в результате разрыва связи углерод — хлор и присоединения возникшего радикала к ненасыщенным углеродным двойным связям [76]. Если олефин не симметричен относительно двойной связи, то могут возникнуть два разных продукта в зависимости от того, к какому концу связи присоединится трихлорметильный радикал. Очень часто промежуточные органические радикалы, образовавшиеся по реакции (9.105), недостаточно активны и не могут отнять галоген у полигалоида при этом вторая реакция (9.106) не происходит. В этом случае про- [c.302]

    Отличительной особенностью работ школы Фаворского в этой области является теоретическая направленность исследований. Виниловые эфиры, обладающие своеобразной активной группировкой — непосредственное соседство двойной связи и эфирного кислорода,— представляли для Фаворского большой интерес как объект изучения взаимного влияния атомов. На примере реакций бромирования было установлено, что с увеличением массы радикала (от метила к изопропилу) уменьшается способность двойной связи к присоединению галогенов. В процессе исследований Фаворский и сотрудники синтезировали ряд неизвестных до того времени бромвиниловых эфиров общей формулы СНВг=СН—ОК [c.84]

    Поскольку связь фтор — водород очень прочна, то в реакции любого органического соединения, содержащего водород, с элементарным фтором происходит более или менее неупорядоченный отрыв водорода. Таким образом, олефины образуют простые продукты присоединения фтора только в том случае, когда олефин является пергалогензамещенным. И далее, как показали Миллер и Кох [260], в этом случае не происходит образования атомов галогена на первой стадии в отличие от других реакций гомолитического присоединения галогенов. Связь атомов в молекуле фтора настолько слаба, а фтор-углеродная связь настолько сильна, что молекулы фтора могут присоединяться как таковые с образованием фторированного аддукт-радикала и атомарного фтора. Атом фтора будет затем присоединяться к соседней молекуле олефина с образованием другого фторированного аддукт-радикала. Таким образом, аддукт-радикалы стремятся образовываться локальными парами, которые наряду с участием в обычном процессе развития цепи вступают во взаимодействие друг с другом с образованием димеров [c.864]

    При радикальном механизме изомеризации, продемонстрирован ном выше для реакций в присутствии 8Рб, путем стабилизации образующегося сложного радикала можно получить продукты при соединения к олефинам галоген- и кислородсодержащих и други) гетероорганических соединений. Интересно, что продукты присоеди нения образуются вопреки правилу Марковникова, в связи с чe такое активированное присоединение является удобным методол получения ряда неразветвленных гетероорганических соединений и линейных а-олефинов. [c.78]

    Стадия 2 представляет собой реакцию отщепления, поэтому частица W почти всегда одновалентна и является либо водородом, либо галогеном (разд. 14.4). Обрыв цепи может происходить любым из способов, обсуждавшихся в гл. 14. При присоединении радикала 12 к другой молекуле олефина образу- [c.143]

    Путем замещения водорода связи С—Н галогеном (или путем непосредственно присоединения галогена к ненасыщенным углеводородам) образуются органические галогенопроизводные. Так, при замещении на хлор водорода в метане образуется метилхлорид ( H3 I), при замещении водорода в этане—этилхлорид ( 2H5 I) и т. д. Как видно из приведенных примеров, названия галогенозамещенных производят от названий тех углеводородных радикалов, или алкилов, которые они содержат (вданном случае этими радикалами будут метил — СНз и этил — С2Н5). Обозначая в общем виде углеводородный радикал через R, можно представить уравнение реакции между предельным углеводородом и галогеном следующим образом  [c.309]


    Гипогалогениты можно получать в процессе реакции, добавляя галоген к воде или к водному раствору щелочи, пропуская хлор в водный раствор едкого натра и хлорной ртути [54], в водный раствор мочевины и переосажденного мела [55], применяя водный раствор гипохлорита кальция и двуокись углерода [56] или трет-бутил-гипохлорит [57]. Эмульгирующие агенты увеличивают эффективность присоединения [58, 59]. В присутствии реакционноспособных растворителей, таких, как спирт или кислота, образуется соответствующий простой или сложный галогенза.мещенный эфир 160 с хорошими выходами. Галогензамещенный простой эфир может также образовываться из Ы,Ы-дибромбензолсульфамида и этилового спирта [61]. В присутствии воды Ы-бромацетамид (КБА) образует бром-гидрины [62], а в инертных растворителях он дает дибромзамещен-ные продукты присоединения [63]. Продукты присоединения двух атомов брома получаются в результате ряда сложных реакций между олефинами и М-бромацетамидом [64]. По-видимо.му, сначала присоединяется радикал М-бромацетимидила, а затем, после термического разложения, образуется продукт присоединения двух атомов брома. [c.413]

    Алкилбензолы могут реагировать с галогенами двумя различными путями. В разд. 2.5.6 были уже рассмотрены ионные реакции. В радикальных реакциях стадия, определяющая природу продукта, почти всегда представляет собой отрыв атома, причем, как правило, более предпочтителен отрыв одновалентного атома, а не атомов высшей валентности. Так, этан реагирует с атомами хлора, образуя первоначально этильный радикал, а не атом водорода. Бензол не вступает в эту реакцию, поскольку связь С—Н имеет более выраженный 5-характер (С2ар2—Ни), чем в алкане, и вследствие высокой прочности связи Н° = 468,72 кДж/моль) отрыв водорода атомом хлора является сильно эндотермической реакцией (АЯ° = 37,7 кДж/моль). Так же как и в условиях ионной реакции, существует возможность присоединения к аренам и в том случае, когда генерируются радикалы. Например, хорошо известно присоединение хлора к бензолу. В результате образуется смесь изомеров один из них, так называемый 7-изомер ГХЦГ у 1,2,3,4,5,6-гексахлорциклогексан), ранее широко исиользовался как инсектицид. Присоединение атомов хлора к кольцу, например в толуоле,— обратимый процесс, тогда как отрыв водорода — необратимый. Так, при фотохлорировании толуола образуется бензилхлорид, однако при низких температурах и высоких концентрациях хлора проходит в значительной степени присоединение к кольцу. Бромирование толуола при умеренном освещении или в присутствии пероксидов протекает эффективно и дает бензилбромид. Вследствие низкой энергии связи бензил — водород (/)Я° = 355,72 кДж/моль) отрыв водорода атомом хлора становится экзотермическим процессом (АЧ° = —75,3 кДж/моль). Исходя из энергии диссоциации связи (ОИ°), для образования бензильнОго радикала из толуола требуется на 79,5 кДж/моль меньше энергии, чем на образование метильного радикала из метана. [c.388]

    Если в реакции присутствует также и олефин, то галоген-алькильный радикал может присоединяться к нему. Такое присоединение радикала часто сопровождается развитием цепных реакций, которые хорощо известны и поэтому здесь не будут подробно рассматриваться [c.392]

    Выше мы указывали, что атомы водорода, а также атомы галогенов и алкильные радикалы легко присоединяются к молекулам олефинов, образуя новые, более сложные радикалы. С такой же легкостью происходит присоединение атомов Н С1, алкильных и других радикалов к молекуле кислорода, обладающей, подобно олефинам, известной ненасыщенностью, в результате чего образуются радикалы HOg, lOg и перекисные радикалы ROO. Имеются указания, что способностью присоединяться к молекулам непредельного строения обладают также гидроксил НО и окислы азота N0 и NOj. Так, Смит [1512] в результате анализа экспериментальных данных по фотолизу нерекиси водорода, HgOa, пришел к заключению о возможности существования малоактивных свободных радикалов НО3 и НО4, образующихся при присоединении радикалов НО и НО к молекуле кислорода. Точно так же в результате исследования изотопного обмена кислорода 0 между NgO 5 и молекулярным кислородом, а также в результате исследования окисления N0 кислородом, содержащим 0, Огг [1308] заключил, что механизм первой реакции должен включать образование радикала NO4 (см. также [963]), а второй — радикала NOg. [c.83]

    Далее Кельщ предполагает, что роль соли окисной меди заключается в отрыве одного электрона от радикала, образующегося при присоединении арильной группы. При этом остается катион, к которому впоследствии может присоединиться галоген или ацетат-ион [c.177]

    Относительно наиболее сильный электроположительный элемент среди галогенов, под, может выступать в соединениях в качестве электроположительного иона, а именно электроположительного одновалентного иона, как в перхлорате иода ИСЮ4], а также трехвалентного — в последнем случае чаще всего в форме радикала иодила [10] (пример иодилсуль-фат [I012S04). Вероятно, в водном растворе в очень небольших количествах иод может существовать в качестве положительного иона Г. Его способность к образованию положительных ионов значительно возрастает благодаря соединению с органическими радикалами (образование иодо-ниевых соединений, см. стр. 848) или при присоединении нейтральных молекул (см. стр. 837 и сл.). Таким путем удалось недавно стабилизировать в качестве положительного одновалентного иона также бром (см. стр. 838). В общем, однако, галогены не выступают в электроположительном состоянии в качестве элементарных электролитических ионов, а соединяются с другими элементами, обычно с кислородом, давая отрицательные радикалы, которые часто очень устойчивы в водных растворах. [c.828]

    Исследования галогенов, датируемые 1808 г., были начаты в сотрудничестве с Тенаром с изучения хлора и хлористоводородной кислоты. В те времена хлор, открытый, как было уже сказано, Шееле, рассматривался не как элемент, а как кислородное соединение муриевого радикала (Бертолле), как, скажем теперь, окисленная хлористоводородная кислота в соответствии с предложенной Лавуазье теорией кислородных кислот считалось, что хлористоводородная кислота содержит химически присоединенную воду. Но на основании синтеза безводной хлористоводородной кислоты соединением 1 объема хлора с 1 объемом водорода Гей-Люс-сак заключил, что хлор не содержит кислорода, открыв таким образом поле для немного более поздних исследований Дэви, который доказал, что хлор — элемент, а хлористоводородная кислота не содержит кислорода. Гей-Люссак изучал также хлорную кислоту и ее соли, а выполненные им исследования иода были поистине классическими. Один скромный химик-селитровар Бернар Куртуа (1777—1836), действуя хлором на маточный рассол золы морских водорослей, открыл этот элемент но не охарактеризовал его сколь-нибудь удовлетворительно Гей-Люссак не только установил его элементарную природу, аналогичную-природе хлора, но и приготовил производные иода — иодистоводор0днун> кислоту, йодную кислоту, йодный ангидрид, монохлорид иода и многие другие Исследования фосфорных кислот способствовали выяснению отношения между орто-, пиро- и метафосфорной кислотами. [c.179]

    Производные фенола, подразделяющиеся на нитрофенолы и хлорфенолы. известны не только своими фунгицидными, но и высокими бактерицидными свойствами. Они отличаются избирательностью действия. Многие препараты эффективны в борьбе против микроорганизмов, вызывающих биологическое разрушение неметаллических материалов, особенно древесины. В США для этой цели ежегодно выпускается от 13 до 20 тыс. т пентахлорфенолята меди. Вещества, относящиеся к галогеналкилфенолам, проявляют наивысшую фунгицидную активность. Присоединение к молекуле хлоралкилфенола другого низшего алкильного радикала или введение в молекулу фенола алициклического или ароматического радикала увеличивает такую активность. Из других галогенов только введение хлора и его накопление в v Oлeкyлe фенола способствуют увеличению токсичности соединений (Мельников, 1974). [c.50]

    В молекулах, которые до сих пор были подвергнуты рассмотрению, все связи с атомом металла принадлежали к одному и тому же типу. Имеются некоторые сведения о том, как действует на связь углерод — металл присоединение к металлу других атомов, например в молекулах типа RHgX, где R представляет собой алкильный или арильный радикал, а X — галоген. Энергия диссоциации связи D (R—HgX) измерялась непосредственно путем пиролитического разложения многих соединений. Она может быть вычислена из величины АЯобр (RHgX, газ) с помощью термохимического уравнения [c.204]

    Интересным примером является обратимое присоединение атомов галогенов и тиоалкильных радикалов к алкенам с последующим распадом радикала [c.95]


Смотреть страницы где упоминается термин Радикалы присоединение галогена: [c.289]    [c.105]    [c.88]    [c.252]    [c.404]    [c.50]    [c.229]    [c.71]    [c.129]    [c.330]   
Методы эксперимента в органической химии Часть 2 (1950) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Присоединение к галогенов

Присоединение радикалов



© 2025 chem21.info Реклама на сайте