Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические периодические процессы

    Первое направление — препаративное и физико-химическое изучение процессов комплексообразования в системах металл подгруппы титана или пятой группы периодической системы — лиганд (среда — преимущественно аминоспирт, фенолы и их производные). Близко примыкают к названным работам электро-химические исследования неводных сред. Выполнялись также исследования технологического характера. По отмеченной тематике опубликовано свыше 50 статей. [c.170]


    Физико-химические основы процесса. Наиболее распространенным способом рекуперации летучих растворителей в химической промышленности является адсорбционный метод. Независимо от технологической схемы извлечения паров растворителя из очищаемых потоков (непрерывная или периодическая) при адсорбционном методе сорбент последовательно проходит стадии адсорбции, десорбции, сушки и охлаждения. Технологический режим каждой из этих стадий различен по температуре, влажности, скорости прохождения через слой сорбента газа, пара или воздуха и т. п. [c.131]

    Задачи изучения процесса на каждом из этих этапов различны. При разработке и исследовании в лаборатории нужно подобрать наилучшие условия осуш,ест-вления процесса, после чего можно оценить его технико-экономическую эффективность и исследовать физико-химические закономерности. На втором этапе необходимо обеспечить создание наиболее эффективной промышленной установки при наименьшем числе переходных стадий — опытных установок. Промышленная эксплуатация требует периодического или непрерывного изменения характеристик процесса для оптимизации по выбранному критерию (выход продукта, прибыль, себестоимость и т. п.). Эти задачи до последних лет решались исследователем или инженером на основе собственных знаний, опыта и интуиции. [c.8]

    Например, пусть в изотермическом периодическом реакторе проводят химическую реакцию первого порядка. Для описания процесса на основе физико-химических представлений получим уравнение, выражающее зависимость текущей концентрации исходного вещества С от его начальной концентрации времени процесса т и его температуры Т в виде  [c.134]

    Виброобработка — процесс увеличения сети трещин в ПЗП и изменения физико-химических свойств пласта и насыщающих флюидов генерированием виброударных волн на вибраторе, опускаемом к обрабатываемому интервалу. Высокоамплитудные волны давления генерируются при периодическом перекрытии потока рабочей жидкости. Чередующиеся перепады давления (иногда с частотой до 500 Гц) ведут к развитию трещин в ПЗП. [c.7]

    Периодическими называются термотехнологические процессы, в которых порция исходных материалов загружается в печь, претерпевает ряд физико-химических превращений, затем все образовавшиеся продукты выгружаются. Время процесса складывается из 1) времени загрузки исходных материалов в печь 2) времени протекания термотехнологических процессов, включающего время нагрева исходных материалов до температуры, при которой осуществляются физические, химические и коллоидные превращения, а также время охлаждения получаемого продукта до заданной температуры 3) времени выгрузки продукта. [c.113]


    Итак, процесс суспензионной сополимеризации в периодическом реакторе сопровождается потоками тепла и массы на единичных, взаимодействующих друг с другом включениях дисперсной фазы и должен рассматриваться как процесс нестационарного тепло- и массообмена с химическими реакциями с учетом стохастических эффектов дробления — коалесценции включений, а также изменения физико-химических свойств системы. [c.274]

    Известно, что многие физико-химические свойства вещества, в том числе и важные для катализа, определяются в конечном счете электронной структурой входящих в его состав атомов (ионов). В то же время электронная структура атома определяется положением элемента в Периодической системе элементов. Таким образом, сопоставление каталитической активности металлов с их положением в Периодической системе элементов до определенной степени позволяет, с одной стороны, предсказывать каталитические свойства еще не изученных металлов (и их соединений), с другой — судить о механизме элементарных актов каталитических и электрохимических процессов, протекающих на поверхности этих металлов. [c.33]

    Коэффициент К4 (табл. 7) учитывает опасности физико-химических процессов. К ним относятся процессы непрерывного и периодического характера проводимые под вакуумом неустой- [c.258]

    Опасности проведения физико-химических процессов (коэффициент K ) для технологических блоков по факторам 1 и 2 могут быть снижены за счет перевода периодических технологических процессов в непрерывные по фактору 3 — за счет подбора материалов и технологических режимов, направленных на уменьшение значения показателя опасности (величины абсолютного значения) по фактору 4 — цо давлению и температуре, концентрации взрывоопасных веществ, соотношению и скорости дозирования сырья, материалов, катализатора — за счет выбора и использования эффективных и надежных средств контроля и регулирования параметров в заданных пределах с более высоким классом точности, а при недостаточной надежности этих [c.260]

    Загрузка сырья в аппарат и выгрузка из него полупродуктов или готовой продукции производятся непрерывно или через определенные промежутки времени периодически небольшими по сравнению с рабочим объемом аппарата порциями, причем загрузка и выгрузка не прерывают химических и физико-химических процессов, протекающих в аппарате. В каждом аппарате процесс протекает в течение смены, суток, декад и т. д. при постоянном режиме. [c.22]

    Сложность организации АСУ на предприятиях химической и нефтехимической промышленности обусловлена специфическими производственными особенностями в различных подотраслях. Функционируют предприятия с непрерывным и периодическим процессом производства с химической, физико-механической и смешанной технологией с различным уровнем специализации крупнейшие химические комплексы и небольшие заводы по ремонту шин и производству регенерата. Все эти факторы затрудняют создание типовых разработок и унифицированных решений. [c.382]

    При проводке скважин глинистые породы, склонные к обвалам, обваливаются обычно не сразу при их вскрытии, а через некоторое время. По данным [93], процесс осыпания кыновских аргиллитов носит периодический характер стадии интенсивного осыпания чередуются с периодами стабилизации размера ствола скважины, т. е. с периодами, в течение которых не наблюдается заметного увеличения среднего диаметра каверн. При этом продолжительность стадии осыпания и периодов стабилизации зависит от физико-химических свойств промывочной жидкости и скорости ее движения в затрубном пространстве. Из этих данных, а также из данных о набухании кыновских глин [15] очевидно, что период начального осыпания, как и период стабилизации, после которого идет осыпание второй стадии, по продолжительности близок к периоду набухания этих глин. В большинстве случаев обвалы происходят через длительный период после вскрытия глинистых пород с применением глинистого раствора и через меньший — с применением воды в качестве промывочной жидкости. [c.94]

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Элементарные процессы в плазме. Движение электрически заряженных частиц в плазме отличается от движения нейтральных частиц в газах. В обычном газе отдельная частица между двумя последовательными столкновениями движется с определенной постоянной скоростью, акт соударения можно представить как столкновение жестких шаров, путь отдельной частицы — ломаная зигзагообразная линия. При соударении нейтральных частиц направление движения и скорость меняются резко. В плазме заряженные частицы движутся под действием электрических полей ускоренно и замедленно. Ускоренное движение периодически заменяется замедленным, а замедленное — ускоренным. Траектория движения, как правило, — сложная зигзагообразная кривая, не содержащая прямолинейных участков. Плазма характеризуется большим числом разновидностей взаимодействий и соударений. Типичными взаимодействиями — соударениями являются нейтральная частица — нейтральная частица, ион — нейтральная частица, электрон — нейтральная частица, электрон — электрон, ион — ион. Взаимодействие заряженных частиц отличается от взаимодействия нейтральных атомов и молекул большим радиусом действия и коллективным характером. Каждый из перечисленных видов взаимодействий вносит свой индивидуальный вклад в физико-химические характеристики плазмы. Их строгий учет сталкивается с большими трудностями. [c.248]

    Периодический закон сыграл решающую роль в выяснении сложной структуры атома. При помощи периодической системы элементов удается определять физико-химические константы химических соединений на основе сопоставления известных величин. Периодический закон — фундамент химии, в первую очередь неорганической он помогает решению задач синтеза веществ с заданными свойствами разработке новых материалов, в частности полупроводниковых, подбору специфических катализаторов для различных химических процессов и т. п. [c.32]

    Задача аналитической химии — разрабатывать, совершенствовать и правильно применять разнообразные методы изучения, определения состава и строения соединения. В аналитической химии необходимо уметь применять физико-химические законы — периодический закон и закон действия масс, использовать теорию водных и неводных растворов, комплексных соединений, окислительно-восстановительных процессов, закономерности образования осадков, коллоидных систем и сорбции молекул и ионов. Основные сведения об этом излагаются в курсе общей и неорганической химии. В курсе аналитической химии эти сведения расширены и конкретизированы применительно к ее задачам. [c.5]

    Поддержание в ячейках в процессе проведения испытаний периодически изменяющегося влажностного режима грунта, что имеет место в реальных условиях, приводит к очень сложной картине перераспределения влаги и удаления ее из ячейки при различных температурах. По мере испарения влаги меняется характер связи между почвенными частицами. При этом повышается концентрация почвенного раствора и коагуляционные меж-частичные связи постепенно переходят в конденсационные, а затем при определенных условиях — в кристаллизационные. Механизм движения влаги в такой многофазной, неоднородной системе, каким является влажный грунт, представляет собой сложный физико-химический процесс. В зависимости от различных условий на данный процесс оказывают влияние разность химических потенциалов взаимодействующих между собой составляющих грз нта и различные градиенты, возникающие в нем. [c.70]

    Из всех известных для ферритов кристаллических структур (шпинель, гранат, перовскит и магнетоплюмбит) наиболее полно рассматривается первая. Мы не ставили перед собой задачу обобщить результаты всех исследований по термообработке ферритов, опубликованных за последнее время в периодических изданиях и патентной литературе. Это было нецелесообразно хотя бы потому, что подавляющая часть работ носит эмпирический характер. Главной целью авторов было в наиболее доступной форме изложить современные представления о физико-химической природе процессов, происходящих при термической обработке ферритов. Мы будем считать свою цель достигнутой, если, эти представления помогут технологам более осмысленно подойти к выбору условий термической обработки, обеспечивающих получение материалов с широким диапазоном свойств. [c.6]

    Периодические процессы могут быть автоматизированы лишь частично. При необходимости комплексно автоматизировать проиэв одство, ведущееся периодическим способом, его предварительно переводят на работу непрерывным способом. Этот перевод связан с необходимостью проведения углубленного физико-химического изучения процесса производства, с разработкой новой технологической схемы и конструкцией аппаратов непрерывного действия. Решение подобных вопросов представляет собой сложную научную и инженерную проблемы, которые вы- [c.394]

    То, что катализатор не участвует в стехиометрическом уравнении реакций, не означает абсолютной неизменности его состава и свойств. Под влиянием реагентов, примесей, основных и побочных продуктов реакций, циркуляции и температуры катализатор всегда п ретерпевает физико — химические изменения. В этой связи в про — мышленных каталитических процессах предусматриваются операции замены, периодической или непрерывной регенерации катализатора. [c.80]

    В промышленных условиях активность катализатора практически любого нефтехимического гетерогенно-каталитического процесса со временем уменьшается вследствие образования коксовых отложений на активной поверхности. Для восстановления основнь1х характеристик закоксованные катализаторы периодически подвергают окислительной регенерации. Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, протекающих при взаимодействии кислорода с коксом и приводящих к его удалению с активной поверхности катализатора в виде газообразных продуктов окисления. Физико-химические закономерности этих реакций определяются количеством и способностью кокса к окислению, составом газовой фазы, температурой и свойствами поверхности, на которой происходит окисление. [c.68]

    Признаком операции считается сохранение определенной закономерности ее протекания. Выделение того или иного элементарного процесса в качестве самостоятельной операции зависит как от его физико-химической природы, так и от целей исследования. Например, при расчете объема реактора периодического действия по материальному балансу и длительности техиологическо1"[ стадии процесса в качестве операции можно п )пнять элементарный технологический процесс при исследовании же аннарата периодического действия как объекта автоматического или автоматизированного управления необходима более глубокая детализация технологического процесса, Та1с, в качестве отдельной операции следует выделить включение перемешивающего устройства, хотя для составления материального баланса в такой детализации нет необходимости. [c.20]

    Рассмотрим подробнее процесс моделирования гибких химико-технологических систем на основе модульного ир1 нципа., >лементом гибкой хпмико-технологической системы является технологический аппарат периодического, непрерывного или полунепрерывного действия. Технологическая стадия в аппарате периодического действия есть упорядоченная последовательность технологических операций, каждая из которых представляет собой совокупность типовых физико-химических процессов. Поэтому модель М,, технологической операции к есть замкнутая система уравнений типовых прои.ессов, что формально можно записать следующим образом  [c.80]

    Каждый аппарат периодического действия является слолаю системой, в которой протекают сменяющиеся во времени сложные физико-химические процессы, образующие определенную последовательность, но при формировании моделей химико-тех-нолоричеоких систем аппарат периодического действия рассматривается как единое целое и считается, что в любой произвольный момент времени он может находиться в единственном состоянии, В этом смысле аппарат не декомпозируется на отдельные подсистемы. [c.134]

    Гетерогенный реактор с твердыми частицами катализатора -это динамическая система, в которой в просфанстве и во времени объединены сложные физико-химические процессы, происходящие на поверхности и внутри пористого катализатора, внутри и на фаницах реакционного объема в целом. В стационарном режиме все потоки объединены материальными и энергетическими балансами. Поэтому редко удается организовать каталитический процесс так, чтобы все его уровни - от поверхности катализатора до контактного отделения - работали в режиме, соответствующем оптимальному. Например, состав, сфуктура и свойства катализатора определяются состоянием газовой фазы. Следовательно, повлиять существенно на характеристики катализатора, работающего в стационарных условиях, не представляется возможным, так как состав газовой фазы предопределен степенью превращения и избирательностью. В нестационарном режиме, оказывается, можно так периодически изменять состав газовой фазы или таким образом периодически активировать катализатор, что его состояние будет значительно [c.304]

    Последнее соотношение явилось причиной того, что в современной физико-химической литературе скорость химических реакций и скорость превращений выражают через йс16,1. При расчетах реакторов, однако, это может вызвать путаницу, особенно для непрерывного процесса в установившемся режиме, где концентрации не зависят от времени пребывания в реакторе. Выражение d /iii в уравнении (П,3) — по сути дела не скорость реакции и пе скорость превращения это скорость изменения концентрации в реакторе периодического действия вследствие химической реакции. [c.41]

    К системам, 1[аиболее полно отвечающим условиям бурения в сильноувлажненных глинистых породах, относятся гипсовые, малосиликатные юромывочные жидкости и др. При этом не следует повышать скорости бурения, а в наиболее тяжелых случаях периодически останавливать процесс бурения на период, необходимый для заве])шения течения физико-химических процессов в системе промывочная жидкость — приствольная зона скважины. [c.109]

    В последние годы значительно возрос интерес к кинетической теории разрушения полимеров, основанной на изучении физических и физико-химических процессов, вызываемых действием статических, ударных и периодических нагрузок. Глубокое изучение этих процессов позволит научно подойти к созданию новых высокопрочных полимерных материалов и способов их защиты от разрушения под действием различных видов нагрузок. В предлагаемой монографии проф. Г. Кауша, являющегося руководителем лаборатории полимеров отдела Высшей политехнической школы в Лозанне, систематизированы и обобщены результаты многочисленных исследований, включая основополагающие советские работы школы акад. С. И. Жур-кова. [c.5]

    Цель истинной науки — внать, чтобы предвидеть, — это бесспорно, но значение периодического закона не исчерпывается тем, что он дает возможность оценить огромное количество необходимых для теории и практики значений физико-химических констант простых веществ и их соединений. Колоссальное множество закономерностей, объединяемых периодическим законом, позволяет заранее предвидеть поведение веществ в различных процессах и особенности протекания химических реакций. Развитие химии вскрывает все больше таких [c.98]

    Учебник написан коллективом авторов кафедры общей химии химического факультета МГУ в соответствии с действующими программами по общей химии для нехимических специальностей университетов (биологов, геологов, географов и почвоведов). В нем рассмотрены основные онцепции и законы, определяющие химическую форму движения материи, которые и составляют предмет химической науки и учебного предмета общая химия теория строения вещества, направления и скорости химических процессов-реакций, а также периодический закон, на основе которого изложены основы неорганической химии. В отличие от других книг того же названня, предназначенных для инженерных специальностей вузов, в данном учебнике сделан упор на фундаментальные проблемы современной химии в соответствии с задачами университетского образования. По сравнению с предыдущими изданиями введены главы, посвященные химической эволюции материи, вопросам бионеорганической химии, химической экологии, физико-химическому анализу. [c.2]

    Качественно новым этапом описания процессов, протекающих в ферментационной среде бнореактора, явилось развитие представлений о существовании в аппарате отдельных зон, характеризующихся различным уровнем смешения. В основу моделирования возможных ситуаций в бпореакторе положены модели микросмещения и сегрегации. С физико-химической точки зрения ферментационная среда представляет собой многофазную систему, качественно описываемую двухуровневой иерархической схемой, где на нижнем уровне находятся отдельные составляющие среды — клетки, диспергированные капельки субстрата, а на верхнем— крупномасштабные скопления в виде клеточных агломератов, глобул из клеток, субстрата и пузырьков газа. Размер и количество этих скоплений зависит от степени турбулизацин среды. При этом ферментационную среду, соответствующую смешению уровня агрегатов, можно рассматривать как сегрегированную систему, поведение которой соответствует множеству реакторов периодического действия, в которых происходит рост и развитие микроорганизмов в течение времени ферментации. Размер клеточных агломератов и глобул зависит как от сил, сцепленных между элементами их составляющими, так и от интенсивности перемешивания в биореакторе, количественной характеристикой которой может служить величина диссипации энергии в данной области аппарата и связанная с ней величина внутреннего масштаба турбулентных пульсаций [c.147]


Библиография для Физико-химические периодические процессы: [c.15]    [c.311]    [c.19]    [c.135]    [c.409]    [c.133]    [c.205]   
Смотреть страницы где упоминается термин Физико-химические периодические процессы: [c.52]    [c.2]    [c.141]    [c.361]    [c.361]    [c.52]   
Химическая литература Библиографический справочник (1953) -- [ c.113 ]




ПОИСК







© 2024 chem21.info Реклама на сайте