Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходная стадия реакции

    Стадии гетерогенных каталитических процессов. Роль адсорбции. В гетерогенно-каталитических реакциях, как и в других гетерогенных процессах, можно выделить ряд стадий. Наиболее обычными стадиями являются диффузия, обеспечивающая подвод исходных веществ к поверхности катализатора, адсорбция их на этой поверхности, взаимодействие адсорбированных веществ с образованием продуктов реакции, десорбция продуктов и, наконец, отвод продуктов реакции от поверхности катализатора в глубину соответствующей фазы с помощью диффузии. В зависимости от определяющей стадии реакция может протекать в диффузионной, кинетической или переходной областях. С изменением внешних условий роль определяющей стадии может перейти к другому процессу. [c.272]


    При окислении хромовой кислотой спирт нуклеофильно присоединяется к хромовой кислоте, при этом отщепляется вода и образуется эфир хромовой кислоты (это первая стадия реакции, она аналогична образованию сложных эфиров карбоновых кислот, ср. разд. Д,7.1.5.1). Во второй стадии, идущей, вероятно, через циклическое переходное состояние, а- водород спирта переходит к остатку хромата, причем металл из шестивалентного состояния переходит в четырехвалентное  [c.19]

    Более углубленный подход к описанию механизмов ферментативного катализа состоит в том, что для каждой химической стадии реакции воссоздается гипотетическая структура переходного состояния. Поскольку данная структура должна включать все [c.168]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]


    ПЕРЕХОДНАЯ СТАДИЯ РЕАКЦИИ [c.178]

    Р = 1 не отвечают бимолекулярному процессу, так как для последнего характерны значения = 42—84 кДж/моль и 5= = = 20—40 э. е. Тот факт, что энергии активации, рассчитанные для Га и гь, практически близки, еще не указывает на идентичное строение переходного состояния двух реакций. Кроме того, поскольку скорость для дифенилметана меняется незначительно при изменении начальных концентраций компонентов, а для бензола скорость существенно зависит от концентрации, следовательно общей реакцией является изменение степени по бензолу. На основании вычисленных параметров активации можно считать, что первая стадия реакции превращения — это образование поляризованного промежуточного комплекса дифенилметана и хлорида алюминия, вторая — определяющая скорость реакции — ионизация его с образованием бензил-катиона  [c.214]

    Скорость всего процесса в целом зависит от наиболее медленной стадии реакции, которая и является определяющей. Если определяющей стадией является сам акт химического взаимодействия между реагирующими молекулами, а процесс отвода и подвода компонентов практически не влияет на ее скорость, то такую реакцию называют протекающей в кинетической области. Если определяющей стадией является скорость подвода реагирующих веществ, то реакцию называют протекающей в диффузионной области. Если же скорости как самой реакции, так и процессов диффузии соизмеримы, то скорость всего процесса является функцией кинетических и диффузионных явлений и процесс протекает в переходной области. [c.628]

    Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через переходные состояния. Но здесь эти состояния представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти переходные состояния, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется. Кроме того при гетерогенном катализе следует иметь в виду следующие его стадии адсорбцию взаимодействующих веществ на катализаторе изменение электронного строения адсорбированных молекул из-за их взаимодействия с атомами кристаллической решетки катализатора накопление реагируюш,их молекул на поверхности катализатора. [c.200]

Рис. 27. Профиль по-. тенциальной энергии реакции. Цифрами обозначены различные. стадии реакции 1 — исходное. состояние, когда между реагентами нет взаимодействия 2 — начальная стадия реакции 3 — переходное состояние Рис. 27. Профиль по-. тенциальной <a href="/info/9187">энергии реакции</a>. <a href="/info/588298">Цифрами обозначены</a> различные. <a href="/info/6303">стадии реакции</a> 1 — исходное. состояние, когда <a href="/info/1490635">между реагентами</a> нет взаимодействия 2 — <a href="/info/1477270">начальная стадия реакции</a> 3 — переходное состояние
    Вообще говоря, возможны четыре типа факторов, определяющих каталитическую активность фермента. Во-первых, необходим химический аппарат в активном центре, способный деформировать или поляризовать химические связи субстрата, что делает последний более реакционноспособным, во-вторых,— связывающий центр, иммобилизующий субстрат в правильном положении к другим реакционным группам, участвующим в химическом превращении, в-третьих,— правильная и точная ориентация субстрата, благодаря которой каждая стадия реакции проходит с минимальным колебательным или вращательным движением вокруг связей субстрата, и, наконец, в-четвертых, способ фиксирования субстрата должен способствовать понижению энергии активации ферментсубстратного комплекса в переходном состоянии. Соответствующее распределение зарядов в активном центре и геометрия активного центра входят в число факторов, определяющих снижение суммарной энтропии переходного состояния. Все эти факторы в той или иной степени влияют на структуру активного центра фермента, и их нельзя рассматривать изолированно, вне связи друг с другом. В совокупности они увеличивают скорость ферментативной реакции и позволяют ферменту выступать в роли мощного катализатора [77]. [c.209]

    В ходе расчетов были получены энергетические, структурные и электронные характеристики реагентов, продуктов и интермедиатов на каждой стадии реакции, были локализованы переходные состояния в отдельных элементарных актах. [c.42]

    Следует подчеркнуть, что хотя эта интерпретация является вполне естественным следствием полученного из опытных данных кинетического уравнения, тем не менее это уравнение нельзя рассматривать как однозначное доказательство правильности такой интерпретации. Полученное из опытных данных кинетическое уравнение содержит информацию о частицах, входящих в состав переходного состояния, отвечающего лимитирующей стадии реакции из такого уравнения можно сделать лишь косвенные выводы о промежуточных соединениях и практически никаких или почти никаких выводов о частицах, участвующих в быстрых, нелимитирующих стадиях реакции. [c.60]


    В переходном режиме из-за разной скорости элементарных стадий реакции [209] может возникнуть необходимость использовать и другую кинетическую модель. Чтобы выявить некоторые характерные черты нестационарного режима, рассмотрим его более простые модели. [c.154]

    В возникшей промежуточной структуре (показанной в квадратных скобках, что символизирует переходный комплекс) валентность правого атома углерода полностью насыщена, а у левого атома углерода имеется только секстет электронов. Рассматриваемую переходную частицу, несущую положительный заряд, называют ионом карбония. Эта частица неустойчива и обладает большой реакционной способностью, так как ей необходим донор электронной пары, чтобы насытить ее валентные возможности. В рассматриваемом случае таким донором электронной пары оказывается хлорид-иоН, образуемый реагентом НС1, и поэтому между ионом карбония и хлорид-ионом возникает химическая связь. Окончательную стадию реакции можно представить себе следующим образом  [c.467]

    Механизмы реакций. Один из важных итогов рассмотрения кинетики химических реакций — выяснение их механизма. Дпя полного описания механизма реакции необходимо 1) выявить отдельные стадии реакции и изучить их равновесие 2) охарактеризовать промежуточные продукты и оценить время их жизни 3) описать переходные состояния компонентов (зная состав, геометрию, сольватационные и энергетические характеристики) 4) описать процессы, предшествующие каждому переходному состоянию и следующему за ним (зная энергетические уровни основного и возбужденного состояния). Такое представление о механизме можно получить только дпя самых простых систем. [c.91]

    Используя соотношение Бренстеда для описания влияния природы растворителя на скорость лимитирующей стадии реакции (4.21) (и вставая тем самым на позиции теории переходного состояния), получим [c.66]

    Поскольку переходные состояния имеют практически нулевое время жизни, их невозможно наблюдать непосредственно и об их геометрии можно только делать заключения на основании косвенных данных. Часто такие заключения бывают вполне основательны. Например, в реакции типа 5к2 (разд. 10.1) между СНз1 и 1 (реакция, при которой продукт идентичен исходному соединению) переходное состояние должно быть совершенно симметричным. Однако во многих случаях невозможно прийти к таким легким выводам, и тогда на помощь приходит постулат Хэммонда [10], который гласит геометрия переходного состояния похожа на геометрию тех веществ, к которым оно ближе по свободной энергии, и это относится к каждой стадии реакции. Так, в случае экзотермической реакции, подобной изображенной на рис. 6.1, переходное состояние больше похоже на реагенты, чем на продукты, хотя здесь разница не слишком велика, так как величина АС с обеих сторон значительна. Этот постулат очень полезен при рассмотрении реакций, в ходе которых образуются интермедиаты. В реакции, показанной на рис. 6.2,а, первое переходное состояние по энергии намного ближе к интермедиату, чем к реагентам, поэтому можно предполагать, что и геометрия его больше похожа на геометрию интермедиата, а не на геометрию реагентов. Точно так же второе переходное состояние по величине свободной энергии намного ближе к интермедиату, чем к продуктам, и потому по геометрии больше похоже на интермедиат, а не на продукты. О структуре интермедиатов обычно известно больше, чем о структуре переходных состоя- [c.282]

    В известных пределах переходное состояние VIII сходно с я-аллильным комплексом VII, однако в отличие от него не является кинетически независимой частицей и не существует сколько-нибудь продолжительное время на поверхности катализатора. Преимуществом ассоциативной схемы по сравнению с диссоциативной является то, что для нее не требуется допущения полного разрыва С—Н-связи на первой стадии реакции, требующего, как известно, значительной затраты энергии. [c.31]

    Превращение основного состояния фермепт-субстратного комплекса в переходное ведет к увеличению прочности связывания фермента с субстратом (точнее, измененных или активированных фермента и субстрата) и к уменьшению активационного барьера реакции. При этом в согласии с основными положениями теории переходного состояния уменьшение свободной энергии активации соответствующей стадии ферментативной реакции определяется разницей свободных энергий реального и гипотетического фер-мент-субстратного комплекса. Иначе говоря, во сколько раз напряжения ухудшают возможное связывание субстрата с активным центром, во столько же раз возрастает скорость соответствующей стадии ферментативной реакции ири условии снятия этих напряжений в переходном состоянии на данной стадии [79—82]. Следовательно, если напряжения или деформации, существующие в фермент-субстратиом комплексе, снимаются в переходном состоянии реакции, то они выгодны для фермента на стадии каталитического превращения комплекса. Чем более выражены такие наиряжения в фермент-субстратном комплексе, тем выше каталитическая копстапта ферментативной реакции. Согласно классификации фермеит-субстратных взаимодействий именно те взаимодействия, прочность которых возрастает прн образовании переходного состояния ферментативной реакции, называются специфическими [81, 82]. [c.163]

    Эти примеры относятся к гетерогенному катализу, при котором реагирующие молекулы адсорбируются на поверхности катализатора (разд. 14.11.2). Очевидно, что Зй(-электроны переходного металла-катализатора участвуют в образовании промежуточных соединений с реагирующими молекулами. При гомогенном катализе, обцчном для реакций в растворах, переменная степень окисления переходных металлов обуславливает возможность участия их в последовательных стадиях реакции (разд. 14.11.1). Например, окисление иодид-ионов пероксодисульфат-ионами S20e происходит в соответствии с уравнением  [c.513]

    Влияние субстрата. Электронодонорные группы понижают, а электроноакцепторные повышают скорость реакций SeI, что и следует ожидать, если лимитирующая стадия реакции подобна отщеплению протона от кислоты. Дженсен и Дэвис показали, что в случае механизма Se2 (с тыла) реакционная способность алкильных групп аналогична реакционной способности их в реакциях Sn2 и соответствует ряду Me>Et>Pr>u30-Pr> >неопентил это следовало ожидать, поскольку оба механизма включают атаку с тыла и одинаково чувствительны к стерическим затруднениям [10]. Действительно, указанный порядок реакционной способности можно рассматривать как доказательство наличия механизма Se2 (с тыла) в тех случаях, когда невозможно выполнить стереохимические исследования [35]. При изучении реакций Se2, происходящих с сохранением конфигурации, результаты не были однозначными [36]. Так, в случае зеакции RHgBr + Br2- -RBr, катализируемой Вг (табл. 12.1) 37], а-разветвление повышает, а -разветвление понижает скорость реакции. Сайре и Дженсен связывают уменьшение скорости со стерическим затруднением, хотя атака в данном случае явно фронтальная, а увеличение скорости объясняют электронодонорным эффектом алкильных групп, стабилизирующим электронодефицитное переходное состояние [38]. Конечно, стерическое затруднение должно также существовать и в а-раз- [c.419]

    Пусть стабилизация системы А+В происходит за счет переноса заряда с ВЗМО системы А на НСМО системы В. Уход электрона с занятой МО, где он связывал реагирую-, щий центр (атом) с другими атомами молекулы А, ослабляет эту связь, что приводит к увеличению расстояния между реагирующим атомом и остальными атомами молекулы А. Атом как бы изолируется от остальной части молекулы, в результате чего энергия ВЗМО увеличивается, и уход электрона с этой МО энергетически выгоден. Это означает, что в разложении, (1Х, 9) вес конфигурации с переносом заряда возрастает, вместе с чем повышается роль делокализационной энергии в стабилизации системы А+В, причем не только на начальной стадии реакции, но и на стадии, близкой к переходному состоянию. Такое самоускорение химического взаимодействия, возможно, представляет собой один из основополагающих принципов химических реакций. [c.197]

    Прямые расчеты показывают, что вращение метиленовых звеньев не определяет координату реакции на ее начальном участке. Если рассматривать реакцию со стороны циклобутена, такой координатой служит растяжение связи С —С. Расчеты покалывают, что при изменении R от равновесной для циклобутена величины 0,1534 - 0,2270 нм метиленовые группы не вращаются. Вращение начинается лишь при достижении R = 0,207 нм (MINDO/3) 0,2270 нм (аЬ initio, 4-31 G), причем в процессе вращения метиленовых групп величина R уже не меняется (см. рис. 13.9). Именно в этой стадии реакции возникают отличия в энергетике конротаторного и дисротаторного каналов (см. рис. 13.10). Только после окончания вращения метиленовых групп до требуемой структурой 1,3-бутадиена величины угла в продолжается растяжение R до равновесного значения 0,2819 нм в бутадиене. Неплоское переходное состояние Сг-симметрии VIII с диэдральным углом < = 54° возникает в зоне [c.504]

    Какая из стадий реакции (Г.5.1.) — (Г.5.2) определяет скорость реакции, зависит от эне1ргии обоих переходных состояний [разд. В,3, уравнение Аррениуса (B.20)]L Еслн самой медленной стадией процесса является отщепление протона [уравиение (Г.5.2в)], то наблюдают кинетический изотопный эффект соединения, в которых соответствующий атом водорода замещен атомом дейтерия или трития, реагируют медленнее. [c.393]

    В табл. 77 приведены лишь некоторые из сотен известных значений р [4—6]. Из этих примеров следует, что результаты, полученные для ОДНОЙ реакции, весьма рискованно привлекать для исследования другой реакции. При положительном значении р константа скорости или равновесия реакции возрастает с увеличением р, что свидетельствует об ускорении реакции при уменьшении электронной плотности на реакционном центре реакции, характеризующиеся отрицательными значениями р, обнаруживают противоположные закономерности. Реакции, для которых р = О, вообще не подвержены влиянию заместителей. Существует много примеров нелинейных зависимостей Гаммета отклонения от обычного уравнения Гаммета связаны главным обра.-ом с изменением механизма реакции в пределах одной реакционной серии, например с изменением скорость-определяющей стадии реакции или структуры переходного состояния 4, 6, 26]. [c.169]

    Это утверждение лучше всего обсуждать, опираясь на диаграммы потенциальной энергии. Случай ( ) иа рис. 4,8 соответствует сильно экзотермичной стадии реакции с иизкой зиергпей активации. Из постулата Хэммонда следует, что на этой стадии переходное состояние будет структурно сходно с реагентом, так как они относительно близки по энергии н, следовательно, взанмопревращение осуществляется путем сравнительно небольших структурных изменений. В случае (2)  [c.151]

    Простейшие представления о механизме присоединения дают обоснова ние правила Марковникова, На Первой стадия реакции присоединения происходит протонирование олефина или образование переходного состояния с частичным протонйрованием двойной углерод-углеродной связи. [c.79]

    В настоящее время можно считать установленным, что в каталитических системах типа Циглера-Натта одной из причин многообразия типов АЦ на основе одного и того же переходного металла (или полицентровости) является органическое производное непереходного металла (или сокатализатор). Значимо и многопланово также влияние природы сокатализатора на функционирование сформировавшихся АЦ и элементарные стадии реакции полимеризации. [c.156]

    Значение рвг, полученное при исследовании реакций бензальдегидов с бутилгипобромитом по абсолютной величине несколько меньше, чем в реакциях с бутилгипохлоритом, рс1=-1,6 (Бикбулатов Р.Р, 1998 г.). Отрицательное значение рвг показывает что, как и в случае с бутилгипохлоритом, в переходном состоянии лимитирующей стадии реакции (отрыв атома водорода от карбонильной группы [c.11]

    Более быстрая реакция с арилфторидами объясняется сильным индуктивным эффектом фтора атом фтора оттягивает электроны и в результате этого стабилизует переходное состояние первой стадии реакции, которая в конце концов приводит к его замещению. [c.800]


Смотреть страницы где упоминается термин Переходная стадия реакции: [c.67]    [c.88]    [c.429]    [c.40]    [c.211]    [c.204]    [c.179]    [c.202]    [c.279]    [c.343]    [c.224]    [c.326]    [c.265]    [c.332]    [c.250]    [c.305]    [c.15]    [c.334]    [c.276]   
Смотреть главы в:

Ферментативный катализ -> Переходная стадия реакции




ПОИСК







© 2025 chem21.info Реклама на сайте