Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы синтеза серной кислоты

    Получение этиленгликоля из формальдегида организовано в США фирмой Е. I. du Pont de Nemours and o. По этому способу смесь паров формальдегида и воды (объемное соотношение 1 1) абсорбируется водным раствором гликолевой кислоты (мольное соотношение 1 2) с примесью каталитических количеств серной кислоты и затем пропускается через реактор вместе с избытком окиси углерода при 200 "С и 70 МПа (время контакта 5 мин). В результате образуется гликолевая кислота (выход 90—95%), выделяемая перегонкой прн пониженном давлении. После этерификации гликолевой кислоты метиловым спиртом и очистки зфира перегонкой, проводится гидрирование метилового эфира гликолевой кислоты при 200 °С и 3 МПа в присутствии катализатора медь—хромат бария. На стадии восстановления получают этиленгликоль с выходом 90%. Данный метод не получил широкого распространения вследствие многостаднйности и высокой коррозионности среды, но может быть перспективным при снижении стоимости и расщирении производства синтез-газа. [c.274]


    Одной из проблем электрокатализа, где существенную роль, могут сыграть углеродные материалы, является защита окружающей среды [33]. Общим положением является то, что на основе электрохимических методов могут быть развиты производства с уменьшенным количеством отходов. Среди новых процессов следует упомянуть диафрагменный метод производства хлора, электросинтез органических веществ, электрохимический метод синтеза серной кислоты, прямой электрохимический метод переработки сульфидных руд и др. Особенно эффективным может оказаться применение электрохимических методов для крупномасштабного преобразования энергии. Можно полагать, что в будущем решающее преимущество получат способы преобразования энергии, обеспечивающие работу в замкнутых циклических системах, оказывающих минимальное влияние на экологическую структуру биосферы при максимальной эффективности трансформации энергии. Такие циклы должны базироваться на реакциях, включающих ограниченное число веществ, входящих в биоэнергетическую сферу Земли. Это реакции [c.14]

    МЕТОДЫ СИНТЕЗА СЕРНОЙ КИСЛОТЫ [c.63]

    В качестве примеров гетерогенно-каталитических реакций можно указать на окисление диоксида серы в триоксид при контактном методе производства серной кислоты, синтез аммиака, окисление аммиака при производстве азотной кислоты. [c.200]

    Гетерогенный катализ лежит в основе контактного метода производства серной кислоты, синтеза аммиака, производства из него азотной кислоты и других процессов. [c.493]

    С ростом потребления серной кислоты промышленностью органического синтеза и другими производствами появилась необходимость в выпуске больших количеств чистой серной кислоты высокой концентрации и олеума. Это стало возможным только при осуществлении контактного метода получения серной кислоты (стр. 93 сл.), возникшего в конце XIX в. [c.64]

    Для любой температуры мы можем вычислить, пользуясь вышеприведенной формулой, константу диссоциации, а следовательно, и степень диссоциации (см. стр. 165) водяного пара. Контроль вычислений осуществляется самыми разнообразными методами . По-мимо классического метода газового тока, в основных чертах описанного в разделах о синтезах серной кислоты и аммиака, мы укажем лишь на метод Фиг. 58. полупроницаемой перегородки, [c.231]

    Разделение продуктов реакции дистилляцией. В отличие от серной кислоты, соляная кислота легколетуча, поэтому кажется заманчивым удалять ее из реакционной смеси отгонкой. Рациональность схемы разделения продуктов дистилляцией очевидна еще и потому, что при описываемом методе синтеза в реактор вводится большой избыток фенола, который также можно отогнать. [c.127]


    Этот продукт при синтезе дифенилолпропана сернокислотным методом был выделен из отработанной серной кислоты . [c.74]

    Так же, как и при синтезе дифенилолпропана с использованием серной кислоты, в описываемом способе кислоту можно отмыть водой, а остатки ее нейтрализовать щелочным агентом, например гидроокисью кальция. Однако при этом образуется большое количество фенолсодержащих сточных вод кислотного характера. Поэтому в некоторых способах перед промывкой водой рекомендуется добавлять в реакционную массу растворитель, не смешивающийся с водой (хлорбензол, бензол). Добавка растворителя способствует лучшей отмывке дифенилолпропана от кислоты, и, кроме того, при этом большая часть фенола остается в растворителе. Далее массу нейтрализуют и отгоняют от нее фенол, воду и хлорбензол. Полученный дифенилолпропан-сырец очищают известными методами. [c.126]

    Аналогичные эфиры получаются и при обработке спиртов серной кислотой этот метод используют для синтеза сложных эфиров высших спиртов  [c.312]

    Впервые явление катализа было открыто в 1806 г. Н. Клеманом и Ш. Дезормом в камерном процессе получения серной кислоты. Они установили каталитическое действие оксидов азота на скорость окисления SO . В конце XIX в. промышленным методом получения серной кислоты стал контактный способ, основанный на окислении SOj кислородом в присутствии платинового катализатора. В настоящее время вместо дорогостоящих платиповых катализаторов успешно работают оксидные смеси (например, VjOj с K2SO4). Каталитическим способом проводят промышленный синтез аммиака (N ) + 3 (Н ) —> 2 (NH.,), где в качестве катализатора используют железо, промо-тированное оксидами алюминия и калия. Синтез азотной кислоты осуществляют с помощью каталитического окисления аммиака в присутствии платинового катализатора. [c.179]

    Для В. С. Гутыри характерен строго научный подход к решению практических задач. Так, изучив существующие тогда в мировой практике методы синтеза этилового спирта, он остановился на наиболее перспективном методе гидратации олефинов с помощью минеральных кислот (серной кислоты) с последующим омылением эфиров в алкоголи. Экспериментальные исследо- [c.4]

    Метод синтеза этилового спирта, предложенный в 1932 г. В. Ф. Герром с сотрудниками, заключается в следующем. Пирогенный газ пропускают через активированный уголь с целью поглощения последним гомологов этилена очищенный газ содержит водород, метан, этан и этилен (до 22 % по объему). В таком составе газ (так называемая этиленовая фракция) при нормальном давлении и температуре около 100 °С поступает в железные скрубберы с насадкой из мелких кусков кварца, орошаемых — навстречу газовому потоку — концентрированной серной кислотой (плотность при 15 °С — 1,84) В указанных условиях максимальные выходы этилового спирта колебались по лабораторным данным в пределах 7—8 % на газ (30% потенциала этилена в газе) при расходе кислоты в 14—16 кг/кг абсолютного спирта, по данным работы полузаводской спиртовой установки — не выше 6,5 % на газ нри расходе кислоты до 18 кг/кг абсолютного спирта. [c.26]

    Одним из перспективных направлений в развитии сернокислотной промышленности является повышение давления на всех стадиях получения продукции. В настоящее время очевидны преимущества этого способа по сравнению с широко распространенной технологией получения серной кислоты по методу двойного контактирования и двойной абсорбции под атмосферным давлением. В работе [29] выполнен автоматизированный синтез оптимального агрегата производства серной кислоты под давлением 1,2 МПа и показана его высокая экономическая эффективность по сравнению с зарубежными аналогами. Синтез оптимального агрегата был выполнен в традиционной постановке структурно-параметрической оптимизации [30]. [c.272]

    В некоторых нефтехимических синтезах, в частности при получении бутилкаучука, изопрена, термостойких пластических масс,, используют только разветвленные олефины С4—Се. Примеси нормальных олефинов, как правило, ухудшают свойства готового продукта. Например, химическая инертность, высокая термостабильность и низкая электропроводность бутилкаучука достигаются-лишь при отсутствии в мономере (изобутене) примесей н-бутенов. Применяемая в промышленности абсорбция изобутена из фракции олефинов С4 (их содержится 50—60%) серной кислотой не обеспечивает должной чистоты мономера — в нем остается небольшое количество бутена-1, а также меркаптана. Применение адсорбционных методов с использованием цеолитов (главным образом a ) позволило решить эту проблему, в частности выделить-99,9%-ный изобутен. . [c.199]

    Разработанные методы в рамках АСАС ХТС позволяют решать широкий круг задач по модернизации действующих производств и проектированию вновь создаваемых. В качестве примера ниже рассмотрены основные этапы синтеза ХТС производства серной кислоты из серы под давлением [6]. . [c.609]


    Усовершенствование метода. Изложенный способ получения капролактама имеет два главных недостатка дорогостоящий синтез сульфата гидроксиламина и расходование большого количества серной кислоты и аммиака с получением 4—5 т малоценного отхода сульфата аммония на 1 т капролактама. Крупным усовершенствованием явилась разработка нового способа получения гидроксиламинсульфата — каталитическим гидрированием оксидов азота (нитрозные газы). Их производят окислением аммиака, а гидрирование ведут в разбавленной серной кислоте в присутствии платины, осажденной на активированном угле  [c.568]

    Отработанная разбавленная серная кислота (70%-ная) вытекает из нижней части колонны и поступает без охлаждения непосредственно на упаривание. Расход серной кислоты составляет 3—4 т на 1 т азотной кислоты. Для возврата отработанной серной кислоты в процесс ее следует концентрировать до купоросного масла. Это связано с большим расходом топлива, безвозвратными потерями некоторого количества серной кислоты и с сильной коррозией аппаратуры. В настоящее время поэтому в промышленности широко применяется метод прямого синтеза концентрированной азотной кислоты и осваивается метод концентрирования разбавленной азотной кислоты перегонкой в присутствии Mg(NOз)2, используемой в качестве водоотнимающей соли. [c.111]

    Один из наиболее удовлетворительных методов синтеза метионовой кислоты сводится к разложению формилметионовой кислоты водным раствором щелочи [437]. Формилметионовая кислота может быть легко иолучена действием дымящей серной кислоты на ацетилен [439] или ацетальдегид [438], а также из сернистокислого калия II хлоральгидрата [443]. [c.176]

    При обработке первичных, нптросоединепий серной кислотой без предварительного превращения их в сопряженные основания получаются карбоновые кислоты. Гидроксамовые кислоты являются интермедиатами и их можно выделить, поэтому такое взаимодействие может служить и методом синтеза этих кислот. Как реакция Нефа, так и процесс, приводящий к гидроксамовой кислоте, включают образование -формы различие в продуктах обусловлено различием в кислотности, например переход от 2 М серной кислоты к 15,5 М приводит к тому, что вместо альдегида получается гидроксамовая кислота [60]. Механизм реакции, приводящей к гидроксамовой кислоте, достоверно неизвестен, но поскольку для его реализации требуется высокая кислотность, то возможно, что дальнейшему протонированию подвергается протонированная аци-форма нитросоединения. [c.330]

    Задача 18.3. а) Окнсь углерода превращает в 2,2-диметилбутановую кислоту раствор следующих веществ в серной кислоте 2-метилбутена-2, трет-иентилового спирта и иеопен-тилового спирта. Предположите вероятный механизм этого метода синтеза карбоновых кислот, б) н-Бутиловый н втор-бутловый спирты дают при такой же обработке один и тот же продукт. Какова будет его структура  [c.558]

    Пробковая кислота с выходом 89% получается при гидролизе а-трихлор-(о-циангептана серной кислотой. В свою очередь, а-трихлор-(о-циангептан получают с выходом 89—98% реакцией тетрахлоргептана с цианистым калием или цианистым натрием [23]. Описанные в этом разделе методы синтеза пробковой кислоты слишком сложны, чтобы они могли явиться основой для разработки промышленного процесса. [c.141]

    Электрохимическим окислением I, в среде разбавленной серной кислоты (150 г/л) в присутствии сульфата аммония (435 г/л), возможно получить И с таким же выходом, который получен прн окислении I в серной кислоте оптимальной коицеитрацни (450—550 г/л), что позволит значительно сократить расход серной кислоты при электрохимическом. методе синтеза никотиновой кислоты. [c.364]

    Л1-КСИЛОЛ в промьпиленном масштабе выделяют из технического ксилола двумя способами экстракцией смесью фторида водорода и трифто-рида бора и селективным сульфированием с последующим гидролизом полученной сульфокислоты. По первому способу, разработанному в Японии, работает установка мощностью 20 тыс.т в год л -ксилола [6]. Метод сульфирования серной кислотой основан на большей скорости сульфирования л -ксилола по сравнению с другими изомерами и последующем гидролизе полученной л -ксилолсульфокислоты, которая легче других сульфокислот разлагается. Мощности установок для выделения м-ксилола этим методом, например, в США составляли 40 тыс. т в год [7]. Однако указанные способы сложны и не нашли широкого распространения. Кроме того, себестоимость получаемого продукта значительно выше себестоимости других изомеров ксилола, и м-ксилол, выделяемый этими методами, используется ограниченно для производства продуктов органического синтеза. Поэтому большая часть л<-ксилола до последнего времени употреблялась в основном как растворитель в смеси с другими изомерами или подвергалась изомеризации в более ценные продукты-о- и и-ксилолы, являющиеся исходным сырьем для получения соответственно синтетического волокна лавсан и фталевого ангидрида. Разработка более эффективных методов выделения и-ксилола (например, адсорбционных) позволит получить м-ксилол, близкий по стоимости к другим изомерам, что даст возможность широко использовать его для получения производных изофталевой кислоты. [c.8]

    Гетерогенный катализ лежит в основе контактного метода производства серной кислоты, синтеза аммиака, производства из него азотной кислоты и других процессов. На базе этих процессу получила развитие промышленность азотных удобрений, искусственной кожи, некоторых видов пластических масс, фотокинопленки и ряда. других продуктов. [c.698]

    Азотная кислота из селитры. До разработки методов синтеза азотную кислоту получали перегонкой нитрата натрия (чилийской селитры) с серной кислотой (метод, открытый Глаубером в XVII в., который использовал нитрат калия)  [c.420]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Описанный выше метод синтеза 2,6-ди-/га/)ет-бути.1-4-метил-фоно.са с применением в качестве катализатора концентрирован-1[ой серной кислоты имеет крупный недостаток в присутствии серной кисхоты реакция протекает пе однозначно, и часть изобутилепа п])евращается в малоценный диизобутилен. [c.393]

    Синтез ирисадки ВНИИ НП-371 осуществляется двумя методами. По первому методу процесс синтеза включает следующие стадии алкилирование фенола широкой фракцией полимердистил-лята в присутствии 98 %-ной серной кислоты (8 % от общего Количества фенола и полимердистиллята), получение алкилфенолята бария и конденсацию алкилфенолята бария с формальдегидом в щелочной среде. Алкилфенолят бария получают при мольном соотношения гидроксид бария алкилфенол = 1 2 обработку гидроксидом бария проводят при 120°С. При конденсации применяется 37%-ный водный раствор формальдегида, (мольное соотношение формальдегид алкилфенолят бария = 2 1 (или формальдегид алкилфенол = 1 1) конденсацию проводят при 70—72 °С в среде разбави геля — индустриального масла И-12 (или веретенного). Предполагается, что конденсация протекает по схеме  [c.199]

    По второму методу синтеза алкилфенол сначала подвергают конденсации с формальдегидом (в виде 37 %-ного водного раствора), взятым из расчета 1 моль формальдегида на 2 моль алкилфенола. Конденсация протекает в кислой среде, катализатором конденсации является алкилфенолсульфокислота, образующаяся при алкилировании фенола полимердистиллятом в присутствии серной кислоты. Предполагается, что конденсация проходит по схеме  [c.199]

    Первоначально синтез дифенилолпропана был реализован при 30—40 С с 70—76%-ной серной кислотой в качестве катализатора и тио ликолевой кислоты как промотора. Необходимость избытка серной кислоты (из-за разбавления образующейся водой) и ее регенерации, побочное сульфирование фенолов и образование большого количества токсичных сточных вод сделали этот метод неперспективным. [c.551]

    Однако эти методы уступгют очистке с помощью растворов серной кислоты. Заслуживает внимания непрерывный экстракционный метод очистки НСО смесью водных растворов ароматических сульфокислот и серной кислоты, детали которого требуют дальнейшего изучения. Этот способ пригоден как для очистки НСО, полученных из сульфидных концентратов, так и для выделения НСО из окисленных перекисью водорода фракций дизельного топлива. Непосредственное окисление фракций дизельного топлива с последующим выделением из них НСО в настоящее время разработано Институтом нефтехимического синтеза им. Топчиева, Казанским химико-технологическим институтом и значительно усовершенствовано НИИНефтехимом. Мы в своей рабоге также получали НСО этим способом в периодическом режиме при нагревании реакционной смеси (диз. топлива + перекись водорода) до 80—90 "С, используя в качестве катализатора серную кислоту, и считаем, что этот метод значительно технологичнее, чем применение уксусной кислоты, ввиду отсутствия промывок диз. топлива и сульфоксидов от уксусной кислоты. [c.35]

    В 1955—1959 гг. в Японии разрабатывали методы синтеза ал-килфенантренов реакцией алкилирования фенантрена спиртами в присутствии ВРз и активного глинозема [131]. Получали алкилфенантрены в присутствии серной кислоты разной концентрации (80—85%) [128]. Выход продуктов алкилирования фенантрена по указанным методам составлял 19—61%. Более высоких выходов целевых продуктов удалось достичь при повышении концентрации серной кислоты до 90—95%, при этом было установлено, что выход и состав продуктов алкилирования зависит от температуры и продолжительности реакции и концентрации кислоты. Из данных табл. 4.26 видно, что оптимальным режимом процесса получения моноалкилфенантрена является темлература 73—74 °С, концентрация серной кислоты 90 — 92% и продолжительность реакции 7—9 ч. [c.160]

    Целесообразно остановиться на некоторых особенностях упоминающихся выше методов ФИН, а также фирмы Bayer. Оба эти метода также являются двухстадийными, с получением ДМД в качестве промежуточного продукта. По методу ФИН синтез ДМД протекает в системе жидкость—жидкость, в присутствии 10%-ной серной кислоты, при 75—80 С с использованием двух- или трехступенчатого каскада смеситель—отстойник. Синтез осуществляется с рециркуляцией водного слоя реакционной жидкости, причем избыточное по балансу количество воды (вносимой с 40%-ным формалином) выводится из системы путем упаривания реакционной водной фазы под вакуумом, с рециркуляцией кубового остатка. По данным фирмы Bayer синтез ДМД проводится с использованием ь качестве катализатора суспендированной ионообменной смолы — сульфокатионита (размер частиц от 0,1 до 500 мкм). Процесс также осуществляется с рециркуляцией упаренного водного слоя, однако, в отличие от метода ФИН, упариванию подвергается практически нейтральная жидкость, получающаяся после отделения смолы, что несомненно более предпочтительно. [c.367]

    Рост спроса на изооктан привел к разработке неоднократно упоминавшегося нами метода одностадийного синтеза действием серной кислоты на смесь бутиленов и изобутана. В результате этого и количественные возможности синтеза изооктана сильно возросли, тем более что вскоре былн найдены также и промышленные пути изомеризации н-бутана в изобутан. Технология процесса изомеризации следующая. В качестве катализатора используется AI I3 или Zn b + H l при температурах порядка 50—100° или 150—200° п давлении 25—30 кг/см [33]. Невозможность проводить каталитическое алкилирование изобутапа этиленом (в отличие от пропилена и бутиленов) над первоначально принятым промышленвостью кислым катализатором (фосфорная кислота на кизельгуре) способствовала развитию процесса алкилировання пзобутана этиленом в неогексан при высоких температурах и давлениях в отсутствии катализаторов. Этот процесс так называемого термического алкилироваиия осуществляется при 490—515° и давлении 320 атм [34]. [c.469]


Смотреть страницы где упоминается термин Методы синтеза серной кислоты: [c.382]    [c.382]    [c.12]    [c.71]    [c.27]    [c.140]    [c.22]    [c.238]   
Смотреть главы в:

Основы общей химической технологии -> Методы синтеза серной кислоты




ПОИСК





Смотрите так же термины и статьи:

Кислота методы

Серная кислота методы

Синтез серной кислоты



© 2025 chem21.info Реклама на сайте