Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Невалентные взаимодействия

    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]


    Размеры макромолекулы в 0-условиях называют невозмущенными. Невозмущенные размеры макромолекулы данной степени полимеризации в растворе зависят только от химического строения цепи числа и длины связей в основной цепи, валентных углов и энергии невалентных взаимодействий близких по цепи атомов и атомных групп, которые обусловливают заторможенность внутреннего вращения звеньев. Эти факторы определяют способность изолированной цепи к конформационным превращениям, т. е. ее гибкость. Поэтому при заданной степени полимеризации невозмущенные размеры могут служить мерой равновесной термодинамической гибкости (жесткости) цепи. [c.91]

    Характеристичность колебания свидетельствует о том, что невалентные взаимодействия фрагмента с другими частями молекулы, вообще говоря, малы. Поэтому частота колебания, по крайней мере характеристического валентного колебания, обусловливается главным образом жесткостью валентной связи. Это хорошо видно из сравнения колебаний простой и двойной связей. Так, частота колебаний i—С лежит в области 800—1200 см-, а частота колебаний С = С — в области 1670—1680 см . [c.148]

    Потенциалы (2)-—чисто атом-атомные. Точечные заряды расположены на атомах кислорода и водорода ( н = 0,34е, до = = 0,68е), невалентные взаимодействия между всеми ато.ма.ми описываются формулой [c.138]

    Как уже указывалось, энергия четной (заслоненной) конформации этана на 13 кДж/моль выше энергии нечетной (заторможенной) конформации. Это значит, что на долю каждого невалентного взаимодействия И.......Н в заслоненной [c.229]

    Расхождение результатов, конечно, велико, но и в таком виде полученная информация достаточно ценна для ряда задач квантовой химии, особенно, для теории невалентного взаимодействия атомов, для вычисления чисел экранирования различных электронных групп и т. п. [c.149]

    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]


    Соединения с водородными связями. Среди сил невалентного взаимодействия большое значение имеет водородная связь, образованная взаимодействием положительно поляризованного атома водорода и отрицательно поляризованными атомами (чаще кислородом), которые могут входить в состав разных или одинаковых молекул. В молекулярных соединениях с водородной связью атомы водорода имеют координационное число, равное двум. Примерами соединений с водородными связями служат вода и лед. Количественной мерой прочности водородной связи в кристаллах льда можно считать энергию сублимации  [c.356]

    ПОТЕНЦИАЛЬНЫЕ ФУНКЦИИ НЕВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ АТОМОВ [c.113]

    Рассмотренные выше особенности строения пероксидов различных классов свидетельствуют о том, что, за некоторыми исключениями, пероксидный остов молекулы стремится к неплоской структуре, характеризуемой величиной торсионного угла ф(С—0-0-Х), Х = Н, С, гетероатом. В случае пероксидного фрагмента, входящего в состав малых циклов, угол ф практически равен нулю. Образование внутримолекулярной водородной связи в пероксикислотах также приводит к нулевому значению торсионного угла. Наоборот, в пероксидах с объемистыми заместителями величина ф растет вплоть до предельного значения 180°. Приведенные примеры показывают, что аномальные значения торсионного угла являются следствием специфических невалентных взаимодействий в молекуле пероксида. В отсутствие или при минимальном эффекте этих взаимодействий величина ф практически для всех пероксидов находится в интервале 110 25°..  [c.117]

    Из всех возможных взаимод. атомов в М. выделяют главные взаимод., или хи.чические связи, к-рые обеспечивают стабильное существование М. и сохранение ею своих основных характеристик в достаточно широкой области изменения внеш. условий. Все прочие (неглавные) взаимод. между атомами в М. не определяют ее существования как целого, хотя и влияют, подчас значительно, на те или иные св-ва. О неглавных взаимод. говорят как о взаимном влиянии непосредственно не связанных атомов, шш невалентном взаимодействии. Энергетически главные взаимод. в данной М., как правило, более значительны, чем неглавные. Вопрос о том, является ли взаимод. выделенной пары атомов в М, главным или неглавным, решается на основании анализа многих физ. и физ.-хим. св-в в-ва, образованного из этих м. [c.106]

    Практически линейные группы найдены и в первом структурно изученном нитрите одновалентной ртути —Hg2(N02)2 [56], состоящем из плоских центросимметричных молекулярных единиц N02-Hg-Hg-N02. Невалентные взаимодействия Hg...O 2,84 и 2,93А аналогичны найденным в [50], с учетом этих контактов [c.33]

    Необратимые флуктуации и механизм самоорганизации белка. Предполагают, что в начальный период все флуктуации - периодические вращения атомных групп вокруг ординарных связей - являются беспорядочными и несинхронизированными друг с другом. В равновесных системах все флуктуации обратимы и согласно основной теории вероятности (так называемого закона больших чисел) составляют пренебрежимо малые поправки к средним значениям. За редким исключением (например, рассеяние света гомогенной средой и броуновское движение, вызываемые обратимыми флуктуациями плотности) они не коррелируют со свойствами системы и не оказывают влияние на ее переход в равновесное состояние В неравновесных системах среди множества обратимых, неустойчивых флуктуаций возникают необратимые флуктуации, оказывающие радикальное воздействие на эволюцию системы. Они не остаются малыми поправками к средним значениям, а существенно меняют сами эти значения, стирая различие между случайным отклонением и макроскопическим проявлением системы. При свертывании белка подавляющее большинство флуктуаций также обратимо и неустойчиво. Но некоторые из них приводят к сближению определенных аминокислотных остатков, и тогда те могут эффективно взаимодействовать между собой. По своим последствиям образующиеся контакты между валентно-несвязанными атомами могут быть подразделены на близко-, средне- и дальнодействующие. Флуктуации, приводящие к образованию первого вида, изменяют взаимное расположение атомных групп в пределах одного аминокислотного остатка второго вида - расположение остатка относительно соседних в последовательности третьего - относительно удаленных по цепи остатков. В зависимости от конформационного состояния белковой цепи по ходу ее сборки одни и те же флуктуации могут быть как обратимыми, так и необратимыми. Последними, т.е. бифуркационными, флуктуации становятся только в том случае, если каждая из них возникает в строго определенном месте последовательности бифуркаций между флуктуирующим клубком и трехмерной структурой. Обратимые флуктуации бесследно исчезают, а необратимые, стабилизированные специфическими невалентными взаимодействиями остатков, остаются в виде гигантских "застывших флуктуаций". [c.96]


    Совместить диаметрально противоположные статистические и детерминистические особенности процесса, выявить их взаимообусловленность и показать неизбежность спонтанного возникновения высокоупорядоченной структуры из флуктуирующего клубка оказалось возможным лишь с помощью нелинейной неравновесной термодинамики. В предложенной на этой основе теории сборки белка постулируется динамическая гетерогенность белковой цепи, которая заключается в альтернировании вдоль развернутой аминокислотной последовательности потенциально конформационно жестких и лабильных участков. Первые могут образовывать относительно стабильные пространственные формы за счет невалентных взаимодействий входящих в них остатков, а вторые - представительные наборы близких по энергии и, следовательно, равновероятных форм. При такой конформационной дифференциации белковой цепи начальный этап ее структурирования предстает в виде возникающих одновременно и идущих параллельно и практически независимо друг от друга процессов свертывания локальных участков. Если протяженность чередующихся конформационно жестких и лабильных фрагментов сравнительно невелика, то при чисто случайно-поисковом механизме становится гарантированным появление в течение короткого времени необратимых бифуркационных флуктуаций, являющихся причиной реализации потенции определенных участков белковой цепи к автономному структурированию. [c.103]

    На следующем этапе сборки проявляется взаимообусловленность конформационных состояний двух или большего числа жестких фрагментов и разделяющих их лабильных участков цепи. Рост длины цепи взаимодействующих остатков, однако, не сказывается существенным образом на продолжительности случайного поиска бифуркационных флуктуаций. Одновременно с увеличением размера автономно свертывающегося пептидного участка, включающего жесткие и лабильные фрагменты, резко сокращается число конформационных степеней свободы за счет их фиксации у первых и уменьшения конформационных возможностей вторых. Новая необратимая флуктуация возникает здесь на фоне более суженного базиса беспорядочных тепловых движений. Момент появления такой флуктуации случаен, но не случайны как сам факт ее появления, так и соответствующее ей стабильное конформационное состояние, определяемое лишь аминокислотной последовательностью данного участка белковой цепи. Энергетическая предпочтительность образовавшейся пространственной структуры обусловлена согласованностью невалентных взаимодействий не только между соседними остатками, что определило возникновение первой бифуркации, но и между далеко расположенными в цепи остатками. [c.104]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]

Рис. 1,2. Потенциальная кривая зависимости энергий невалентных взаимодействий от расстояний между атомами гелия [72] Рис. 1,2. Потенциальная <a href="/info/1358573">кривая зависимости энергий</a> <a href="/info/761085">невалентных взаимодействий</a> от <a href="/info/24920">расстояний между</a> атомами гелия [72]
Рис. 1.3. Потенциальные кривые энергий невалентных взаимодействий атомов азота Рис. 1.3. <a href="/info/100654">Потенциальные кривые энергий</a> <a href="/info/926143">невалентных взаимодействий атомов</a> азота
    С некоторой осторожностью (учитывая невалентные взаимодействия колеблющихся остовов) хаояктеоистическую частоту в сходных молекулах можно сопоставить с значениями энергии Ед(АВ) или Е(АВ), получаемыми при расчете молекулы методом ППДП. Возможны и другие оценки изме- нения характеристической частоты при переходе от молекулы iK молекуле. Характеристическую частоту сопоставляют с плотностью электронного облака между атомами, с величиной заряда на атоме в случае полярной связи и т. д. Такие сопоставления могут играть роль в том случае, если, основываясь на них, можно судить о каких-то свойствах молекулы, когда известны соответствующие спектральные характеристики. [c.148]

    При рассмотрении конформационных энергий алкильных заместителей обращает на себя внимание резкий скачок конформационной энергии при переходе от изопропильного к трет-бутильному радикалу. Этому дают следующее объяснение. Повышенная энергия аксиальных форм является главным образом результатом невалентных взаимодействий заместителя с аксиально ориентированными Н-атомами в 1,3-положениях. Изопропильный радикал в результате вращения вокруг связи, соединяющей его с циклогексановым кольцом, может принять конформацию, в которой внутрь кольца направлен Н-атом. В этой конформации 1,3-взаимодействие изопропильного заместителя мало отличается от соответствующего йзаимодействия СНз- или СгНз-групп, соответственно мало отличаются и их конформационные энергии. Аксиальную трет-бутильную группу нельзя повернуть так, чтобы исключить невалеитные взаимодействия одной из ее СНз-групп с аксиальными Н-атомами в 1,3-положениях (рис. 48) отсюда и повышенная конформационная энергия этой группы. [c.340]

    В связи с этим следует вспомнить, что при обсуждении данных о конформации дигалогенэтанов или моногалоген-пропанов (см. стр. 237) мы убедились, что в ряде случаев скошенная форма, со сближенными заместителями, более устойчива, чем трансоидная. Таким образом, еще раз приходится признать, что между заместителями, в том числе и одноименными, действуют не только силы отталкивания, но и силы притяжения. Обсуждая эти данные [20], Фи приходит к выводу, что обычно между заместителями преобладают силы притяжения (типа сил Лондона), если только нет чистого невалентного взаимодействия Н — И (углеводороды) или заместитель не обладает слишком большим объемом (1,2-ди-иодэтилен, стильбен, фумаровая и малеиновая кислоты). [c.429]

    Рассмотрим подробнее эти взаимодействия. В 1921 г. П. Кизом создал электростатическую модель невалентного взаимодействия молекул. Согласно этой модели энергия электростатического стяжения молекул, находящихся на расстоянии г и имеющих моменты диполей и равна [c.348]

    Ключевая роль несвязывающих электронов кислородных атомов в формировании конформационного потенциала пероксидов показывает важность учета невалентных взаимодействий. Орбитальные эффекты, как и отмечаемое по спектрам ЯМР взаимодействие 0-0-группы с электронными оболочками а, р- и даже у-углеродных атомов (см. разд. 2.3), показывают, что гомолиз 0—0-связи при распаде пероксидов — не изолированный акт, а процесс, в котором участвуют также орбитали электронов соседних атомов и функциональных групп. Эти взаимодействия и обусловливают большое разнообразие механизмов термического распада и диапазон величин прочности О-О-связи. [c.131]

    Термолиз монопероксикеталей [223] характеризуется параметрами, приведенными в табл. 5.22. Несмотря на значительное удаление от пероксидной группы, структура заместителя существенно влияет на кинетику термолиза, в частности, возможно невалентное взаимодействие кислородных атомов заместителя с пероксидной группой. [c.282]

    Рассмотрение межмолекулярных взаимодействий удобно свести к учету атом-атомных невалентных взаимодействий. Хотя для подобных взаимодействий существует квантовомеханическая теория, вполне успещ-ными оказались эмпирическая и нолуэмпирическая трактовки. При описании атом-атомных невалентных взаимодействий полагают, что происхождение вандерваальсовых сил обусловлено разными причинами. [c.465]

    Анализ связей Hg-Hg и Hg-L в комплексах одновалентной ртути с органическими лигандами показывает, что между ними нет строгой корреляции, так же как и в неорганических соединениях, содержащих ртуть в низких состояниях окисления. Расстояния Hg-Hg изменяются в пределах от 2,487 до 2,558А, что хорошо согласуется с расстояниями, найденными в кристаллических структурах неорганических соединений. В комплексах типа Hg2L X2 (п = 2, 4, 6) при X = СЮд анионы не оказывают существенного влияния на длину связи Hg-Hg, они участвуют лишь в невалентных взаимодействиях с атомами металла, в то время как в комплексах с X = ЫОз атомы кислорода анионов дополняют координацию рт)гти пар (Hg2) (Hg...O 2,516 —2,769А). В комплексах [Hg2(L 5)2](H20)2 и [Hg2(L )2](H20)2 молекулы воды участвуют лишь в образовании [c.148]

    Панков В.П., Жбанков Р.Г. Внутри- и межмолекулярные взаимодействия в углеводах (Невалентные взаимодействия и конформации). Минск Наука и техника, 1988. 235 с. [c.394]

    Начавшееся физическое изучение белковых молекул со временем приобретает исключительно важное значение. Физика привнесла в эту область строгость и глубину своих воззрений и концепций, количественные теоретические и экспериментальные методы. Квантовая механика, работы В. -Кеезома (19 6 г.), Д. Дебая (1920 г.), В. Гейглера и Ф. Лондона (1928 г.), Ф. Хунда (1928 г.), Э. Хюккеля (1930 г.), Дж. Леннарда-Джонса (1931 г.), Л. Полинга (1936 г.) и многих других физиков подвели черту под развитием классической органической химии и заложили основы современной теоретической химии (квантовой механики молекул или квантовой химии). Они показали, что помимо валентных взаимодействий атомов существуют и могут оказывать заметное влияние на химическое поведение и формообразование молекул, особенно макромолекул, ранее не принимавшиеся во. внимание невалентные взаимодействия атомов (дисперсионные, электростатические, торсионные, водородные связи). Для познания белков, чувствительных к внешним условиям, использование физических и физико-химических методов, гарантирующих, как правило, не только химическую, но и пространственную целостность молекул, имело важное, часто определяющее значение на всех этапах исследования белков от выделения и очистки до установления пространственной структуры и выяснения механизмов функционирования. [c.66]

    Таким образом, выбранная модельная система состоит из двух подсистем - единичной природной аминокислотной последовательности и водной среды. Является ли такая двухфазная система макроскопической в термодинамическом, статистическом смысле Чтобы стать объектом равновесной термодинамики, все ее подсистемы должны представлять собой совокупность множеств несвязанных друг с другом частиц. Макро-скопичность белковой подсистемы определяется большим числом образующих молекулу белка атомов (порядка 10 -10 ) и значительным количеством конформационных степеней свободы (10 -10 ), позволяющих полипептидной цепи в принципе принимать множество микроскопических состояний (10", где п - число аминокислотных остатков в цепи). Однако эта подсистема не может быть представлена совокупностью беспорядочно перемещающихся и не взаимодействующих друг с другом атомов. Напротив, все они эффективно связаны между собой посредством валентных и Невалентных взаимодействий. Тот факт, что разные природные амино- [c.93]

    Этот тезис, как и положение о том, что трехмерная белковая структура обладает минимальной внутренней энергией, не является, однако, достаточной основой для разработки расчетного метода физической теории, позволяющего по известной аминокислотной последовательности однозначно идентифицировать среди множества возможных конформационных вариантов единственную физиологически активную конформацию белка. Кроме того, нереально определение геометрических параметров этой конформации путем минимизации энергии всех внутримолекулярных невалентных взаимодействий по всем степеням свободы. Достн- [c.102]

    Предположение о согласованности в нативной конформации белка всех внутримолекулярных взаимодействий открывает принципиальную возможность для поэтапного, фрагментарного подхода к решению проблемы структурной организации белковой макромолекулы. Это можно осуществить путем последовательного анализа трех видов взаимодействий, определяющих конформационное состояние каждого аминокислотного остатка в трехмерной структуре. К ним следует отнести, во-первых, взаимодействия атомов одного остатка между собой и с атомами двух смежных пептидных групп (ближние взаимодействия), во-вторых, взаимодействия остатка с соседними в последовательности остатками (средние взаимодействия) и, в-третьих, взаимодействия остатка с удаленными по цепи остатками (дальние взаимодействия) (рис. 1.1). Предложенное разделение взаимодействий до некоторой степени условно. Однакр среди возможных других оно представляется наиболее естественным и, как можно будет убедиться впоследствии, удобным с методологической точки зрения. Выделение трех видов невалентных взаимодействий (а не двух или четырех) не является полностью формальным, так как они довольно четко различаются по своим функциям в организации пространственной структуры молекулы белка. Но главное все же состоит не в способе разделения взаимодействий. Последовательное рассмотрение ближних, средних и дальних взаимодействий, как и взаимодействий, разделенных иным способом, может иметь смысл и привести к предсказанию нативной конформации белка только в том случае, если отобранные на предшествующих этапах наборы конформационных состояний аминокислотных остатков будут непременно включать состоя-Иия, удовлетворяющие условиям последующих этапов. Гарантом здесь Является постулированное в теории положение о согласованности всех видов взаимодействий валентно-несвязанных атомов в нативной конформации белка. [c.105]

    Классический подход к исследованию конформаций был предложен в 1946 г. Т. Хиллом [65] и независимо в том же году Ф. Уэстгеймером и Дж. Майером [66]. Существенный вклад в развитие теории метода атом-атомных невалентных взаимодействий, его применение и популяризацию внес А.И. Китайгородский [67-71]. Подход к оценке взаимодействий включает ряд отнюдь неочевидных допущений и с физической точки зрения не выглядит достаточно строгим. Его аппроксимация реальных внутримолекулярных взаимодействий базируется на механической модели, согласно которой молекула представляется системой точечных масс -атомов без учета их электронно-ядерной структуры и квантовой природы. Атомы соединены валентными связями, которые, как правило, предполагаются жесткими. Пространственное строение такой модели молекулы определяется разного рода взаимодействиями между всеми валентно несвязанными атомами в попарно-аддитивном приближении и ограниченной свободой вращения вокруг всех ординарных связей. Следовательно, предполагается, что взаимодействие между любой парой валентно-несвязанных атомов не зависит от внутримолекулярного окружения, т.е. имеет универсальный характер и определяется исключительно природой атомов и расстоянием между ними. [c.112]

    Межатомные невалентные взаимодействия подразделяются на ван-дер-ваальсовы, электростатические, торсионные и водородные связи. Каждый вид атом-атомных взаимодействий описывается полученной на основе полуклассических или классических предположений потенциальной функцией с системой параметров, подобранных эмпирически. Общая энергия невалентных взаимодействий [/общ (конформационная внутренняя энергия молекулы) предполагается в соответствии с принципом Борна-Оппен-геймера (1927 г.) независимой от энергии валентных связей и пред- [c.112]

    Потенциальная кривая зависимости и цд от где г - расстояние между парой валентно-несвязанных атомов, следует из анализа отклонений свойств реального и идеального газов. Исследования Т. Хилла [81], М. Кривого и Е. Мейзона [82] рассеяния молекулярных пучков позволили установить зависимость /вдв(г)для взаимодействий атомов инертных газов, которые были распространены на атомы соответствующих галоидов. Кривая С/ д как функция расстояния между атомами гелия представлена на рис. 1.2. На больших расстояниях действуют силы притяжения, энергия которых пропорциональна, согласно теории Лондона, 1/г . На более коротких расстояниях при достаточном сближении атомов их ван-дер-ваальсовы радиусы перекрываются, и отталкивание между ядрами и между электронами доминируют над силами притяжения. Энергия отталкивания обычно аппроксимируется как 1/г или ехр(-/). Таким образом, для описания невалентных взаимодействий наиболее широко используются две аналитические формы потенциала потенциал Дж. Леннарда-Джонса ("6-12") С/вд (г) = (-Л/г ) + (В/г 2) и потенциал А. Букингема ("6-ехр") С/вдв( ) = = (Л/г ) + В ехр(-Сг), где Л, 5 и С - эмпирические параметры. Потенциальные кривые Леннарда-Джонса и Букингема очень похожи различие заключается лишь в том, что потенциал "6-ехр" имеет ложный минимум при г < 1,0 А и при / = О величина С/ дв стремится к [c.114]

    На рис. 1.3 сопоставлены потенциальные кривые энергий невалентных взаимодействий атомов азота, отвечающих разным потенциалам, а при совпадении потенциалов - разным наборам эмпирических параметров. Тем не менее, как видно из рисунка, различия между кривыми невелики. Потенциал Букингема с параметрами Д. Бранта и П. Флори (Р) [86] по сравнению с потенциалом Леннарда-Джонса с параметрами Р. Скотта и Г. Шераги (5) [85] имеет более глубокий минимум и более крутой подъем энергии при г < гд. Минимум потенциала А.И. Китайгородского К) [75] отличается самым большим значением равновесного расстояния /д, а потенциал А. Ликвори и соавт. I) [87] - медленным подъемом энергии в [c.115]


Смотреть страницы где упоминается термин Невалентные взаимодействия: [c.138]    [c.184]    [c.229]    [c.227]    [c.343]    [c.197]    [c.114]    [c.659]    [c.138]    [c.128]    [c.8]    [c.64]    [c.84]    [c.94]    [c.104]   
Смотреть главы в:

Конфирмации органических молекул -> Невалентные взаимодействия


Конфирмации органических молекул (1974) -- [ c.70 ]

Биофизическая химия Т.1 (1984) -- [ c.244 ]




ПОИСК







© 2025 chem21.info Реклама на сайте