Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция из переноса энергии

    Возможен также перенос заряда ионизированной молекулой к другой молекуле с более низким потенциалом-ионизации. Таким образом, для смесей может быть характерна определенная избира-. тельность реакций. Кроме многих предложенных механизмов реакции, есть процессы, при которых возбужденные молекулы беч распада теряют свою избыточную энергию. Хорошо известна флуоресценция — превращение молекулярной энергии в видимое излучение Известен также процесс гашения — постепенное рассеивание энергии путем ее передачи ближайшим молекулам при столкновениях, происходящих в результате теплового движения или каким-либо другим путем. На этих процессах переноса энергии основан механизм защиты от излучения, благодаря которой влияние излучения на чувствительные материалы может быть уменьшено. Другой метод, усиливающий такую защиту, основан на изучении реакций радикалов, часть которых может проходить через многие стадии цепного механизма, например, реакции (2) и (4), Если имеются компоненты, склонные вступать в реакцию со свободными радикалами, то интенсивность излучения может быть уменьшена. К таким акцепторам радикалов относятся иод, ненасыщенные соединения, окиси азота, амины и кислород. [c.159]


    Сенсибилизованная флуоресценция. Сенсибилизованная флуоресценция наблюдается при переносе энергии между синглетными состояниями. В общем виде процесс переноса можно записать  [c.55]

    Условия, благоприятствующие переносу энергии а) большое перекрывание первой полосы поглощения акцептора с полосой испускания донора и б) высокий выход флуоресценции донора. Роль донора и акцептора могут играть молекулы одного и того же вещества при условии, если его спектры поглощения и флуоресценции хорошо перекрываются. Эффективность межмолекулярного диполь—дипольного перехода характеризуют критическим расстоянием Яс. — расстоянием между донором и акцептором, а котором вероятность переноса равна вероятности спонтанной дезактивации. Это расстояние рассчитывают по формуле Ферстера [c.55]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Поскольку триплет — триплетный перенос энергии происходит по обменному механизму, т. е. при столкновении молекул, суммарный спин при этом сохраняется, переход становится разрешенным и не зависящим от степени запрета триплет — синглетного перехода A-v A в акцепторной молекуле. Примером триплет — триплетного переноса энергии в жидком растворе при импульсном возбуждении может служить система нафталин — фенантрен. При увеличении концентрации нафталина уменьшается триплет — триплетное поглощение фенантрена и появляется триплет — триплетное поглощение нафталина. При этом при достаточной концентрации триплетных молекул нафталина вследствие триплет — триплетной аннигиляции наблюдается испускание замедленной флуоресценции [c.168]


    Кинетика флуоресценции в твердой фазе. В твердой фазе в отсутствие индуктивно-резонансного переноса энергии должен осуществляться статический механизм тушения флуоресценции. Могут существовать два типа молекул свободные молекулы, рядом с которыми при замораживании раствора нет ни одной молекулы тушителя и молекулы, имеющие соседа-тушителя, нефлуоресцирующие, мгновенно гаснущие . Первый тип молекул сохраняет неизменное время жизни. Поэтому при тушении флуоресценции в твердой фазе часто уменьшается квантовый выход флуоресценции, а время затухания остается неизменным. [c.98]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта Ау (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна + где а — энергия [c.119]

    Обсуждение первичных фотохимических процессов естественно начать с фотодиссоциации, поскольку из всех возможных путей превращения возбужденных частиц именно диссоциация с неизбежностью приводит к химическим изменениям. Различные процессы, приведенные на рис. 1.1, тесно взаимосвязаны, и в этой главе мы должны будем сделать также некоторые заключения, касающиеся флуоресценции и переноса энергии, которые будут обсуждаться более подробно в следующих главах. [c.47]

    Фосфоресценция, как правило, происходит после заселения уровня Г) посредством безызлучательного синглет-триплетного перехода с уровня 5], который в свою очередь возбуждается в результате поглощения света. Состояние 1 обычно имеет меньшую энергию, чем состояние 5ь поэтому долгоживущее излучение (фосфоресценция) является более длинноволновым, чем короткоживущее излучение (флуоресценция). Относительная интенсивность флуоресценции и фосфоресценции зависит от скорости излучения и интеркомбинационной конверсии с 5 абсолютный квантовый выход зависит также от меж- и внутримолекулярных процессов переноса энергии, фосфоресценция конкурирует не только со столкновительным тущением Ти но и с интеркомбинационным переходом на 5о. Разница между общей скоростью образования триплетов из 51 и скоростью фосфоресценции может быть использована для определения эффективности процесса 7 1 5о в условиях, когда процессами бимолекулярного тушения можно пренебречь. [c.101]

    Теперь, когда фундаментальные принципы флуоресценции и фосфоресценции уже рассмотрены, обратимся к детальному изучению внутримолекулярного переноса энергии. [c.101]

    Следовательно, тушение акцепторными молекулами излучения донорными молекулами подчиняется закону Штерна — Фольмера, и величины Ле могут быть рассчитаны при известных значениях (Ао+ко ). На рис. 5.1 представлены некоторые результаты по тушению молекулами диацетила флуоресценции различных доноров. Используя известную величину (/10+ 0 ), из наклона зависимости можно оценить, например, что Ае=3,7х х10 дм /(моль-с) в случае толуола. Для переноса энергии с молекул толуола возможна дальнейшая проверка значения ке [c.125]

    Р (Т" )-Н А (5 ) Р (5(,) + А (Л) (перенос энергии) (5.43) А ( х) + А (Г ) —А (51) - - А (5 ) (кумуляция энергии) (5.44) А (Т ) + Р (Т" ) —> А (51) + Р (5 ) (кумуляция энергии) (5.45) Л (5 1) —А(задержанная флуоресценция) (5.46) [c.136]

    Кроме того, в некоторых случаях существенную роль играют процессы безызлучательного переноса энергии, которые могут приводить к тушению флуоресценции исследуемого вещества. Интенсивность люминесценции вещества в смеси пропорциональна количеству света, поглощенного этим веществом. Доля поглощения, приходящаяся на каждый компонент системы А-Ь В, равна [c.76]

    Одной из разновидностей испускания является сенсибилизированная флуоресценция, которая наблюдается при переносе энергии между синглетными состояниями. Явление переноса энергии заключается в том, что молекула донора О переходит из возбужденного состояния в основное, одновременно передавая свою энергию молекуле акцептора А, которая при этом переходит в возбужденное состояние  [c.132]

    При переносе энергии наблюдается тушение флуоресценции донора О и появляется испускание акцептора А или происходят фотохимические реакции А. Хотя возбуждающий свет поглощается донором О, в возбужденном состоянии оказывается акцептор А. Процессы, в которых возбужденные молекулы образуются за счет переноса энергии, называются сенсибилизированными. Перенос энергии происходит эффективно, если энергия возбужденного состояния А меньше энергии В.  [c.132]


    Рассчитанные расстояния находятся в пределах 50—100 А, что значительно превышает диаметр соударения. Это свидетельствует о том, что перенос энергии не является диффузионным процессом. Процессы переноса энергии необходимо учитывать при изучении тушения флуоресценции. Если эффективность флуоресценции донора высока, а положение полосы поглощения тушителя благоприятствует переносу энергии, то, чтобы можно было пренебречь его влиянием на интенсивность флуоресценции, необходимо снизить концентрацию тушителя до 10 моль/л или меньше. По резонансному механизму осуществляется синглет-синглет-ный перенос энергии. Для некоторых систем обнаружен резонансный перенос энергии между триплетным состоянием донора и синглетным состоянием акцептора  [c.136]

    Поляризационные измерения используются для определения времени вращательной релаксации, размеров больших молекул, времени флуоресценции и переноса энергии синглетного возбуждения между молекулами в растворе. [c.139]

    В твердой фазе в отсутствие переноса энергии должен осуществляться статический механизм тушения флуоресценции. Могут существовать два типа молекул свободные молекулы, рядом с которыми при замораживании раствора нет ни одной молекулы туши- [c.202]

    Нередко электронное возбуждение одного хромофора вызывает флуоресценцию другого хромофора, расположенного поблизости. Так, например, возбуждение молекул красителя, образующих монослой, приводит к флуоресценции слоя другого красителя, находящегося от первого на расстоянии 5 нм. Возбуждение остатков тирозина в белках может вызвать флуоресценцию триптофана, а возбуждение триптофана— флуоресценцию красителя, связанного с поверхностью молекулы белка, или флуоресценцию связанного кофермента [57]. Такого рода резонансный перенос энергии характерен для тех случаев, когда спектр флуоресценции одной молекулы перекрывается со спектром поглощения другой. При этом реального испускания и поглощения света не происходит, а имеет место безызлучательный перенос энергии. Резонансный перенос энергии имеет большое биологическое значение для фотосинтеза. Поскольку молекула с е = 3-10 при воздействии прямого солнечного света поглощает около 12 квантов света в секунду, моно-молекулярный слой хлорофилла будет поглощать всего 1 % общего числа квантов, падающих на поверхность листа [63]. По этой причине молекулы хлорофилла располагаются в виде многочисленных тонких слоев внутри хлоропластов. Однако непосредственно в реакционных центрах, где идут фотохимические процессы, находится лишь небольшое число специализированных молекул хлорофилла. Остальные молекулы поглощают свет и передают энергию в реакционный центр небольшими порциями. [c.31]

    Кинетика флуоресценции при наличии процессов переноса энергии. В системах, где наблюдается моноэкспоненциальное затухание флуоресценции при наличии нерепоглощения флуоресценции, замедляется затухание в соответствии с выражением [c.97]

    Кроме того, существенную роль играют процессы безызлуча-тельного переноса энергии, которые могут приводить к тушению флуоресценции исследуемого вещества. Интенсивность люминесценции веществ в смеси пропорциональна количеству света, поглощенного этим веществом. Доля поглощения, приходящаяся на каждый компонент системы А—В, равна )а/( а+-Ов) и ОвЦОх+Оъ), где Вх и >в — оптические плотности веществ А и В. Если поглощение всей системы равно а, то интенсивность люминесценции А будет [c.82]

    Дальнодействующий диполь-дипольный (индуктивно-резо-нансный) безызлучательный перенос энергии электронного возбуждения в вязких средах приводит к неэкспоненциальному затуханию флуоресценции. Константа скорости этого процесса равна [c.97]

    Запасание и использование солнечного излучения зависит от наличия в растениях хлорофилла. На рис. 8.7 показана структурная формула наиболее широко распространенного хлорофилла о. Резонанс сопряженной системы приводит к оптическому поглощению в видимой области спектра на длинах волн, соответствующих максимальной солнечной интенсивности на уровне моря. В то же время свойственная порфнриновой структуре стабильность гарантирует, что поглощение излучения будет сопровождаться процессами переноса энергии или излучения, а не диссоциацией хлорофилла. Хлорофилл является особо эффективным сенсибилизатором благодаря способности поглощать энергию света и передавать ее от одной молекулы к другой до тех пор, пока не появятся условия, подходящие для сенсибилизируемой реакции. В органических растворах выход флуоресценции составляет примерно 0,3 (хотя в естественных условиях он значительно меньше), что является дополнительным свидетельством стабильности молекулы. [c.230]

    Излучательный н безызлучательный механизмы переноса различают по зависимости времени жизни флуоресценции донора от концентрации акцептора. При излучательном переносе время жизни флуоресценции донора не изменяется или слегка возрастает, при безыз-лучательном переносе — уменьшается. Из-за кажущейся простоты излучательного переноса энергии его иногда называют тривиальным . Скорость излучательного переноса Vrt в растворе можно представить следующим образом  [c.133]

    При высокой концентрации флуорофора и сильном перекрывании его спект )ов поглошения и флуоресценции может наблюдаться перенос энергии между молекулами одного сорта (миграция энергии). Внешне это напоминает явления, наблюдающиеся в случае рсаб-сорбцни. Нужно, однако, подчеркнуть существенные различия при миграции энергии наблюдаемое время жизии не возрастает, не записнт от геометрии образца и способа регистрации. [c.195]

    Авакян П. и Меррифилд Р. исследовали влияние внешнего магнитного поля на триплет-триплетную аннигиляцию экситонов в молекулярных кристаллах [2]. При столкновении двух триплетных экситонов возможен перенос энергии с образованием одной синглетно-возбужденной молекулы. Образовавшаяся таким образом возбужденная молекула высвечивает квант света, и в эксперименте регистрируется именно эта задержанная флуоресценция. Физика магнитного полевого эффекта для этого процесса связана с тем, что два триплетных экситона встречаются в состояниях с суммарным спином 5 = О, 1 или 2. Только пара триплетных экситонов с 5 = О дает задержанную флуоресценцию. Но если при встрече двух экситонов происходит спиновая динамика, т.е. осуществляются переходы между состояниями с 5 = О, 1, 2, то в итоге в задержанную флуоресценцию могут дать вклад все столкновения, столкновения с разными значениями суммарного спина в момент сближения экситонов друг к другу. Насколько эта спиновая динамика окажется эффективной, зависит от напряженности внешнего магнитного поля. Как мы увидим позже, формально схема влияния внешнего магнитного поля на аннигиляцию триплетных экситонов аналогична ситуации рекомбинации РП. Отличие прежде всего в том, что аннигиляция триплетных экситонов - это еще не химическая реакция, и в том, что в случае триплетных экситонов и в случае радикалов эффективны разные магнитные взаимодействия. [c.5]

    При введении тербия(П1) в каль-цийсвязывающий центр термолизина (гл. 7, разд. Г, 4) наблюдалась флуоресценция, обусловленная переносом энергии от иона кобальта(II), находящегося в центре связывания цинка. С помощью уравнения Фёрстера было получено расстояние между Са + и 2п2+, равное 1,37 нм, что согласуется с результатами рентгеноструктурного исследования этого фермента [66] [c.32]


Смотреть страницы где упоминается термин Флуоресценция из переноса энергии: [c.55]    [c.57]    [c.88]    [c.55]    [c.57]    [c.88]    [c.98]    [c.131]    [c.130]    [c.132]    [c.142]    [c.174]    [c.181]    [c.194]    [c.32]    [c.32]    [c.160]   
Фото-люминесценция растворов (1972) -- [ c.87 , c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Флуоресценция



© 2025 chem21.info Реклама на сайте