Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растяжение и адгезия

    Влияние температуры формирования и продолжительности оплавления на свойства покрытий. В процессе исследований порошок полиэтилена наносили на горячую трубу, имеющую температуру + 180, + 200, + 230, + 250 и + 270 С. После проплавления покрытие охлаждалось в течение 5 мин в холодной воде ( + 10 С). Затем определялись характеристическая вязкость, относительное удлинение и предел прочности при растяжении, адгезия и внутренние напряжения (табл. 5.2). [c.122]


    Свойства при растяжении, адгезия в зависимости от состава и метода прививки Адгезия другие поверхностные свойства Тс, Гпл, прочность при растяжении, удлинение Го, Гпл, кристалличность Тс, Гпл, прочность при растяже [c.186]

    Как показывает опыт, лучшим режимом получения покрытия является закалка в холодной воде. При этом режиме увеличиваются адгезия, относительное удлинение. Предел прочности при растяжении снижается незначительно и остается высоким. Однако увеличение скорости охлаждения приводит к некоторому росту внутренних напряжений. [c.126]

    Прочность асфальтобетона на растяжение, сдвиг и т.п. как композиционного материала во многом определяется свойствами вяжущего, которое обеспечивает упругую фиксацию минеральных частиц друг относительно друга, и качеством сцепления вяжущего с поверхностью зерен каменного материала (адгезией). [c.123]

    Здесь Ста — кажущийся предел прочности при растяжении , который получается при экстраполяции ЛПН до т = 0. Действительный предел прочности при растяжении слипшегося сыпучего материала может быть измерен, и обычно он меньше, чем [4]. Значение напряжения сдвига при а = О называется коэффициентом слипания (когезии) с = tg р. Он отражает величину сил адгезии в системе частиц, которые необходимо преодолеть, чтобы началось скольжение. Неспособность противостоять сдвигу (движение сыпучего материала) наступает тогда,когда в определенном направлении местные напряжения сдвига (как это следует из круга Мора) превышают предел сдвиговой прочности материала в данном месте. Следовательно, повреждение в некоторой точке не обязательно произойдет В плоскости максимальных напряжений сдвига, проходящей через [c.227]

    Напряжение растяжения о ленты при нанесении ее на трубу оказывает определенное влияние на адгезию (прилипание) ее к трубе (рис. 31). [c.46]

    Напряжение растяжения в покрытии определяли по методике, описанной в работе [2], коррозию - по методике, описанной в настоящей главе, а адгезию — с помощью пружинного динамометра отслоением полоски изоляции, вырезанной шириной 1 см и растяжением ее под углом 180° к поверхности трубы. [c.46]

    В процессе эксплуатации усадка может происходить вследствие молекулярного и надмолекулярного структурирования и деструкции, испарения пластификаторов, поглощения влаги и газов из окружающей среды и других факторов. Если покрытие имеет достаточную адгезию к изделию, то усадка в нем свободно развиваться не может, поэтому в зависимости от знака усадки (сжатие или растяжение) покрытие окажется сжатым или растянутым. При быстрой сушке напряжения усадки достигают максимального значения и описывается уравнением [c.10]


    На основании полученных данных сделан вывод, что наибольшим модифицирующим эффектом обладает олигомер пиперилена с молекулярной массой 1000 при содержании 10 масс.ч. в каучуке. Модифицирующий эффект при замене масла ПН-6 проявляется в снижении усадки при каландрировании, увеличении сопротивления подвулканизации, в возрастании условной прочности при растяжении и сопротивления раздиру. Надо отметить, что замена масла ПН-6 на олигомер пиперилена несколько ухудшает вязкостно-пластические свойства резиновых смесей. Несколько работ посвящено изучению оксидированных олигодиенов пипериленовой фракции [125, 126], В обоих работах отмечается улучшение адгезии. Особенно привлекателен факт увеличения адгезии [125] резины из бутилкаучука к латуни в 1,6-1,8 раза, так как хорошо известно, что одним из сдерживающих факторов вьшуска автомобильных камер из бутилкаучука является невысокая величина адгезии этих резин к пятке вентиля. В работе [126] наблюдалось также возрастание прочностных характеристик резин, термостойкости и усталостной выносливости при многократных деформациях. [c.144]

    Можно видеть, что использование продуктов модификации полиаминов жирными кисло-мами масел обеспечивает большую стойкость покрытий к воздействию ультрафиолетового излучения. Хотя высокие исходные деформационно-прочностные показатели покрытий желательны, однако важнее, чтобы их уровень, установившийся в процессе эксплуатации, обеспечивал требуемую долговечность покрытия [59]. Иллюстрацией этого могут служить данные о работоспособности покрытий магистральных трубопроводов. Для подобных покрытий, эксплуатируемых в условиях Севера, весьма важна устойчивость к циклическому т-менению температуры и влажности окружающей среды [60]. В табл. 7.7 представлена зависимость внутренних напряжений, адгезии покрытий к алюминию и прочности при растяжении пленок на основе порошковой краски П-ЭП-177 от числа циклов изменения температуры и влажности воздушной среды. [c.191]

    Резины на основе карбоксилсодержащих эластомеров, вулканизованных такими оксидами металлов, как ZnO или MgO, характеризуются высокой прочностью в отсутствие усиливающих наполнителей. По этому показателю они превосходят ненаполненные серные вулканизаты натурального каучука. Кроме того, металлооксидные вулканизаты отличаются высокими твердостью и сопротивлением раздиру, хорошим сопротивлением истиранию и низкой остаточной деформацией при растяжении, повышенной адгезией к металлу и текстилю, хорошими износостойкостью и динамическими характеристиками [58 59]. [c.159]

    Основными видами деформаций, которые испытывают герметики в различных условиях эксплуатации, являются, как правило, сдвиг и растяжение (сжатие), что обусловливает два основных требования, предъявляемых к герметикам, — эластичность и адгезия к различным конструкционным материалам металлам, дереву, пластмассам, стеклу, бетону, камню и др. [c.132]

    Эти испытания включают определение свойств самих герметиков и определение свойств герметиков в модельном шве. При испытании герметиков определяют их внешний вид, консистенцию, жизнеспособность, плотность, потери массы, прочность при растяжении. Испытания герметиков в модельном шве включают опреде тение когезии и адгезии, относительного удлинения, сте-кания.  [c.189]

    Исследование процессов разрушения наполненных резин методом электронной микроскопии показывает [270], что разрыв происходит по извилистой линии от одной поверхности раздела каучук — наполнитель к другой. Поверхности частиц наполнителя или непосредственно примыкающие к ним области могут являться слабыми местами, по которым происходит разрушение. Многочисленные внутренние дефекты, характерные для структуры вулканизатов, вызывают повышенное рассеяние энергии вследствие увеличения объема резины, который необходимо подвергнуть сильному растяжению в процессе разрыва. Объем вовлеченной в процесс деформирования резины и величина рассеиваемой энергии деформации зависят от степени адгезии каучука к наполнителю. Таким образом, появление дефектов (гетерогенности) может не только ослаблять прочность адгезионного соединения, но и быть причиной упрочнения материала. [c.267]

    В монографии рассмотрены такие аспекты адгезионной прочности, как температурно-временная зависимость прочности, внутренние напряжения, характер разрушения, а также методы измерения адгезионной прочности. Характеристикой адгезионной прочности может являться не только усилие разрушения клеевых соединений или модельной системы адгезив — субстрат, но и предел прочности слоистых пластиков при изгибе и растяжении, а также предел прочности при растяжении комбинированных полимерных материалов, поскольку механические характеристики подобных систем зависят от адгезии между компонентами.  [c.9]

    Для определения продолжительности высыхания эмали, цвета, внешнего вида, прочности при ударе и растяжении, адгезии и стойкости пленки к воздействию соляного тумана эмаль наносят на пластинки из стали 08кп или 08пс (ГОСТ 16523—70) размером 70X150 мм и толщиной 0,8—0,9 мм. [c.101]


    В качестве фенолов можно применять феноло-формальде-гидные новолаки и резолы. Реакция образования такого высокомолекулярного полимера из двух сравнительно низкомолекулярных полимерных соединений не сопровождается выделением побочных веществ. Это имеет весьма большое значение в технологии изготовления деталей из пластмасс, особенно стеклопластиков, а также важно в процессах склеивания и высыхания пленок. Соче-тагше резолов с полиэпоксидом дает возможность получить нерастворимые полимеры, значительно более упругие, чем резиты, улучшить адгезию полимера к металлам и стекловолокну, повысить теплостойкость по сравнению с теплостойкостью продуктов взаимодействия полиэпоксидов и полиаминов. Предел прочности при растяжении стеклопластиков на основе полиэпоксидо-резольных композиций может достигать 2500—4000 кг см .  [c.417]

    Наиболее высокие характеристики наблюдаются в направлении, параллельном укладке волокна (табл. 9-2). Композиты, изготавливаемые с применением волокон Кевлар , близки по прочности при растяжении к КМУП, но уступают им в 3-5 раз по прочности при сжатии. Большое внимание при разработке композитов уделяется проблеме повышения их прочности при срезе. Ее значение в основном определяется адгезией связующего к волокну. Специальными приемами, описанными ниже, параметры адгезии можно повысить. В результате предел прочности при срезе КМУП не уступает, а в некоторых случаях больше, чем у стеклопластиков и композитов на основе высокопрочных органических волокон (полиарамидных). [c.512]

    Адгезия связующего, зависящая от содержания и вида функциональных групп на поверхности волокна, изменяет условия отверждения и усадки. Это приводит к образованию в связующем растягивающих внутренних напряжений и соответствующему уменьшению прочности при растяжении КМУП. [c.534]

    Хлорированный полиизопрен, сохраняющий линейную, но цик-лизованную структуру макромолекул, остается растворимым во многих растворителях полиизопрена. Он является твердым до 70°С, кристаллизуется при растяжении, обладает хорошей адгезией к полярным поверхностям, коррозионной стойкостью, клея- дей способност11Ю. [c.281]

    По сравнению с обычным бетоном иоли.мербетон обладает более высокой прочностью при растяжении, сжатии, изгибе и ударе, повышенной адгезии к металлу, более высокой водостойкостью, водоиепроницаемостью и стойкостью к агрессивным воздействиям. [c.355]

    Со временем начальное напряжение растяжения, приложенное к ленте при нанесении, падает почти до нуля. Некоторое возрастание его, начиная с 4-5-10 ч испытания, мояою объяснить развитием в материале покрытия небольших усадочных напряжений. Это подтверждается тем, что при более высокой температуре испытания а возрастает интенсивнее. Адгезия покрытия к стальной поверхности постепенно уменьшается во времени, что объясняется развитием процессов коррозии трубной стали под покрытием. Коррозия при этом равномерна и через 2-10 ч испытания составляет около 3—5 мг/см . Адгезия за зто время падает с 0,130-0,150 до 0,06-0,090 Н/см. [c.46]

    Номерами, начинающимися с 03 88..., обозначены стандарты по климатотехнологии, относящиеся к испытаниям изделий на морозостойкость, теплостойкость в сухой среде, стойкость к солнечной радиации, плесени, пыли, песку и т. д. Значительная часть стандартов под номерами от 67 30... до 67 65... посвящена лакокрасочным материалам и определению их свойств, например стойкости при растяжении, вдавливании, ударе, износостойкости, определению адгезии, стойкости к атмосферным воздействиям, поглощающей способности, стойкости в коррозионной камере, огнестойкости, морозостойкости, стойкости к колебаниям температуры, воздействию химикалиев и т. д. [c.92]

    Добавление 3-5 волокнистого иаполниселя (измельченного асбеста) к основном наполнителю снижает усадку мастики, увеличивает прочность дри растяжении и адгезию к различным материалам. [c.69]

    К.4РБОКСИЛАТНЫЕ КЛУЧУКЙ (карбоксилсодержащие каучуки), синтетич. каучуки, макромолекулы к-рых содержат карбоксильные группы. Наиб. пром. значение приобрели сополимеры бутадиена (а также его смесей со стиролом или акрилонитрилом) с 1-5% метакриловой к-ты. Аморфные каучуки, не кристаллизующиеся при растяжении мол, м. (200-300)-10 , в зависимости от состава плотн. 0,93-0,99 г/см , т.стекл. от —70 до —45 С. По сравнению с каучуками, не содержащими групп СООН, отличаются улучшенной адгезией к металлам и др. субстратам, повыш. когезионными св-вами. [c.320]

    Ароматические мононитрозосоединения взаимодействуют с БК, формируя полимерные продукты, на основе которых получают вулканизаты с повышенными прочностью при растяжении, модулем, деформацией при растяжении после наполнения и вулкаш1зации, а также улучшенными озоностойкостью, электрическим сопротивлением и совместимостью с другими каучуками, смолами, адгезией к шинному корду, металлам, тканям, бумаге и т.д. [18]. Эти эластомеры рекомендуется использовать для пропитки волокнистых натуральных и синтетических материалов, например шинного корда. [c.283]

    Свойства полимерцементных композиций и бетонов на их основе зависят от количества и природы полимера, условий затвердевания. Полимерные добавки значительно повьппают прочность минеральных вяжущих веществ. Так, в случае ПВА прочность полимерцемента при растяжении и изгибе в 2—2,5 раза выше, чем у обычного цемента. Если полимер недостаточно водостоек, то при увлажнении прочность полимерцемента снижается. Очень важна высокая адгезия полимерцемента практически ко всем применяемым в строительстве материалам. При содержании полимера 20—25 % клеящая способность полимерцемента приближается к клеящей способности чистого полимера. [c.103]

    Сополимеры ВА с бутилакрилатом и их растворы обладают высокой прозрачностью (светопропускание не ниже 997о). Они являются типичными эластомерами. Приготовленные из лаков пленки имеют относительное удлинение до 1000% и разрушающее напряжение при растяжении 0,5—0,8 МПа. Лаки БАВ обеспечивают высокую адгезию пленкообразующего к ткани, бумаге. [c.68]

    Продолжаются работы по модифицирующим системам, в которых при вулканизации идет отверждение фенольной новолачной смолы (ФПС). Так, для улучшения физико-механических свойств резин и увеличения их адгезии к шинному корду (текстильному, металлокорду, стеклокорду) резиновая смесь включает НК, СК или их смесь донор метилена (I), выделяющий при нагревании формальдегид (II) (гексаметилентетрамин, мети ЛОЛ амин или его простые и сложные эфиры) акцептор I -фенольную новолачную смолу [332]. В патенте приводится в качестве примера опытная рецептура резиновой смеси. В сравнении с контрольной резиной модуль при 200 %-ном удлинении вырос на 1,7-10 % условная прочность при растяжении на 7-9 % адгезия к латунированному металлокорду после старения в паре (120° Сх24 часа) выше контрольной на 13-16 %, а во влажной среде (влажность 95 %, 21 день при 85° С) на 8-10 % динамическая выносливость выросла на 12-26 %. [c.280]

    Большой интерес представляет распределение нормальных напряжений на поверхности залитых элементов. На рис. 6.6 показана зависимость /Сф от угла при гексагональной упаковке армирующих элементов [37, 41, 42]. Нормальные напряжения на границе раздела могут иметь как положительные (растяжение), так и отрицательные (сжатие) значения, причем с увеличением объемной доли армирующих элементов возрастает доля их поверхности, на которой действуют напряжения растяжения, и значение этих напряжений. При малом содержании армирующих элементов на поверхности раздела наблюдается только сжимающее напряжение, вызывающее увеличение адгезии [37, 44, 46]. Наиболее опасными являются растягивающие нормальные напряжения, вызывающие появление трещин на границе раздела и нарушение адгезии, а в некоторых случаях и разрушение залитых деталей. Касательные напряжения, возникающие вокруг залитых деталей, также могут приводить к местному отслаиванию компаунда. В тех случаях, когда армирующие элементы закреплены на какой-нибудь подлол<ке, распределение напряжений более сложное, причем увеличивается роль растягивающих напряжений и вся конструкция деформируется (коробление). [c.172]

    Рассмотрим вначале полимерную матрицу в ненагруженном однонаправленном композите. Такой композит обычно представляют квадратичной или гексагональной моделью. Минимальное объемное содержание полимера в плотноупакованной квадратичной структуре — около 21%, в гексагональной—13%. Армирующие волокна можно считать совершенно жесткими, так как модуль упругости применяемых неорганических волокон значительно больше модуля упругости полимера. Как уже указывалось выше (см. гл. 3 и 4), при отверждении эпоксидного полимера в ходе изготовления пластика, которое происходит обычно при повышенной температуре, объем полимера уменьшается вследствие его усадки, а вязкость быстро нарастает. До гелеобразования, пока полимер способен к течению, его объем может уменьшаться за счет уменьщения объема всей системы или образования пор. После гелеобразования течение полимера невозможно, и происходит деформация всей системы. Однако при этом деформация полимера ограничена волокнами, что приводит к появлению в полимере внутренних напряжений. Так как армированные пластики, как правило, содержат большое количество наполнителя, то можно считать, что он образует жесткий скелет, препятствующий деформации полимера, т. е. связующее подвергается всестороннему растяжению. Объемная деформация при этом может составлять несколько процентов (см. гл. 4). Таким образом, уже в ненагруженном состоянии эпоксидная матрица должна выдерживать значительные механические деформации без разрушения и нарушения адгезии на границе с волокном. Как показали микроскопические исследования [27—33], эпоксидные смолы значительно лучше других связующих выдерживают подобные условия. [c.209]

    Охлаждение после термообработки Адгезия (по методу решетчатого надреза) Разрушающее напряжение при растяжении, МПа 1кгс/см ) Относительное удлинеине прн разрыве, " о [c.213]

    Интересная попытка учета изменения степени растяжения каучуковой фазы в наполненных эластомерах была предпринята Сато и Фурукава [37], которые рассматривают наполненный эластомер как систему плотноупакованных сфер каунуковой среды имеющих радиус Д в каждую из которых помещена сферическая частица наполнителя радиусом с1-При этом принималось условие, что деформация сферы эквивалентна деформации образца. Полагая, что при слабой адгезии каучука к поверхности наполнителя в процессе деформации образуются вакуоли, Сато и Фурукава рассмотрели случаи как слабой, так и сильной адгезии. Если в процессе деформации вакуоли не образуются, то степень растяжения эластичного материала внутри сферы к связывается со степенью растяжения образца Я следующим соотнощением  [c.138]

    Приготовленные из лаков пленки обладают высокой прозрачностью (светопропускание не ниже 99%), имеют относительное удлинение при разрыве до 1000% и разрушающее напряжение при растяжении 5—8 кгс/см . Лаки БАВ обеспечивают высокую адгезию различных пленочных материалов к ткани, бумаге, 2. Суспензионную полимеризацию винилацетата проводят в водном растворе стабилизатора при 65—95 °С в присутствии растворимых в мономере инициаторов (перекись бензоила, динитрил азо-бис-изомасляной кислоты), В качестве стабилизатора суспензии обычно применяют поливиниловый спирт, содержащий 10—15% неомыленных ацетильных групп. Поливинилацетат получается в виде шариков диаметром 0,1—2 мм. [c.234]

    При использовании в качестве усиливающих материалов стеклянного волокна в виде ровницы, матов, тканей в механизме упрочнения большую роль играет структура армирующего материала, его прочностные свойства и ряд технологических факторов [1]. Однако эффекты усиления и в этом случае не могут быть сведены к чисто механическим факторам без учета роли связующего. В таких системах связующее обеспечивает равномерность нагружения и одновременность работы всех волокон в армированном полимере, склеивает волокна и защищает их от воздействия внешней среды [6]. В этом случае первостепенное значение имеют процессы адгезионного взаимодействия полимера и наполнителя. Усиление при использовании однонаправленного армирующего материала может быть объяснено следующим образом [6]. В процессе приложения нагрузки волокна удлиняются и одновременно испытывают поперечное сжатие. При деформации в клеящей среде волокно при поперечном сжатии должно по всей поверхности оторваться от окружающей его пленки или растянуть ее. Таким образом, удлинение при растяжении вызывает в плоскости, перпендикулярной приложенной силе, растягивающее напряжение, препятствующее удлинению волокна. Это напряжение определяется адгезией смолы к поверхности и свойствами самой клеящей среды. Таким образом, при деформации для разрушения структуры необходимо преодолеть не только суммарную прочность армирующих волокон, но и силы, препятствующие поперечному сжатию, которые тем больше, чем прочнее адгезионная связь и чем больше упругие свойства клеящей среды. При этом предполагается, что смола сильно упрочняется в тонких слоях. [c.274]

    Способность наполнителя поглощать энергию деформирования увеличивается с ростом адгезии, поэтому роль последней в механизме усиления очень велика. Чем ближе по параметрам раство-5ИМ0СТИ (т. е. энергии когезии) каучук и полимерный наполнитель 556], тем резче повышается сопротивление раздиру при увеличении содержания наполнителя, что определяется адгезией двух компонентов. Влияние наполнителя на энергию разрушения связывают также с тем, что частицы действуют как центры рассеяния энергии. Вместе с тем при использовании диспергированного полимера в качестве наполнителя повышается вязкость матрицы по аналогии с понижением температуры, что также сказывается на свойствах системы. Однако образование химической связи полимерной среды с наполнителем (например, в сополимере бутадиена со стиролом, где стирольные участки как бы играют роль наполнителя) может оказывать меньшее влияние на прочность при растяжении, чем наличие в бутадиеновом каучуке равного количества полистирола. [c.278]


Смотреть страницы где упоминается термин Растяжение и адгезия: [c.85]    [c.22]    [c.33]    [c.114]    [c.189]    [c.819]    [c.176]    [c.46]    [c.150]    [c.134]    [c.268]    [c.271]    [c.150]    [c.296]   
Вода в полимерах (1984) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2025 chem21.info Реклама на сайте