Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитраты ионообменное

    В стадии исследования находятся процессы удаления ионов аммония и нитратов ионообменными материалами (см. главу V), электрохимический метод, сочетание хлорирования с фильтрованием через активный уголь, очистка сточных вод в биологических прудах с развитием в них водорослей и др. [c.121]

    Нами разработан процесс получения нитрата калия ионообменным методом из хлористого калия и азотной кислоты по схеме  [c.152]


    Катионит перед набивкой колонки предварительно выдерживают несколько часов в 2 н. растворе соляной кислоты, после чего отмывают путем декантации дистиллированной водой до, потери реакции на хлорид-ион (проба с нитратом серебра). Подготовленный таким образом катионит находится в водородной форме. После этого катионит насыпают в ионообменную колонку, укрепленную в штативе в вертикальном положении, до широкой ее части (рис. 69). Необходимо следить за тем, чтобы катионит в колонке все время находился во влажном состоянии. [c.222]

    Приборы и реактивы. Ионообменные колонки с катионитом и анионитом. Растворы хлорида бария (2%-ный), сульфата натрия (0,2%-ный), нитрата кобальта (0,2%-ный, 1%-ный), нитрата меди (0,2%-ный), нитрата железа (II) (0,2о/ -ный), нитрата никеля (0,2о/ -ный), иодида калия (0,21%-ный), нитрата ртути (0,2%-ный), нитрата висмута (III) (0,4%-ный), сульфата кадмия (0,2%-ный), нитрата свинца (0,2%-ный, 1%-ный), нитрата хрома (111) (1%-ный), нитрата железа (III) (Ю/о-ный). [c.267]

    ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ НИТРАТА КАЛ ЛЯ ИОНООБМЕННЫМ 1 ГОДОМ [c.152]

    В настоящее время в производственных условиях нитрат калия получают ионообменным методом по схеме  [c.152]

    Очевидно, что ионообменная технология деминерализации воды может стать безотходной лишь при условии экономически целесообразной утилизации всех отработанных растворов и загрязненных промывных вод. Решение этой задачи треб ет, прежде всего, применения таких реагентов для регенерации ионитов, которые в итоге вытеснения из смолы поглощенных ею ионов превращаются в ценные для народного хозяйства продукты. Такими продуктами могут быть нитрат кальция, сульфат аммония, фосфаты, т. е. минеральные удобрения, сульфат натрия, находящий довольно широкое применение в стекольной, целлюлозно-бумажной, химической промышленности, чистый хлорид натрия, пригодный для производства хлора и щелочи, и ряд других солей. Непременным условием при этом, однако, является достаточная чистота продукта и возможность получения его в товарной форме (гранулы для удобрений, сухие соли либо насыщенные растворы, например хлорида натрия, направляемого на электролиз). [c.214]

    H l. Ими замечено, что небольшие количества нитрат-ионов (ао-рядка 0,01 М NO3 ) на ионообменной стадии почти в 100 ра уменьшают коэффициент очистки плутония от свинца и висмута  [c.366]


    Для регенерации неиспользованного ядерного горючего водного гомогенного реактора и, в частности, переработки материала ториевой зоны воспроизводства применяю методы осаждения, ионообменной хроматографии, экстракции, кристаллизацию нитратов или сочетание нескольких методов. [c.235]

    Выпадающий фосфат кальция удаляют фильтрованием. Связанный азот, как и фосфаты, способствует размножению водорослей в воде, и его необходимо удалять химическими средствами. Для очистки воды от нитратов применяют коагуляцию соединения железа с известью с последующей фильтрацией осадков или используют адсорбцию на ионообменных смолах. [c.195]

    В растворе после отделения церия содержится Рт , и Лт , которые разделяют на ионообменных колоннах, обогреваемых паром. Из фракции щелочноземельных элементов выделяют Зг осаждением последовательно в виде карбоната, нитрата, хлорида (для отделения от бария) и фторида. Раствор после отделения технеция идет на извлечение цезия. [c.23]

    Рециркуляция также нащла широкое применение в процессах выпаривания, адсорбции, сушки, экстракции, кристаллизации, в ионообменных процессах (например, при получении калиевой селитры на катионите КУ-1, что позволяет получать высококонцентрированные растворы нитратов. Широко распространена рециркуляция в аппаратах с псевдоожиженным слоем. Рециркуляция является эффективным средством теплосъема и поэтому позволяет осуществлять в промышленности реакции, протекающие с большим выделением тепла. В случае применения рецикла по жидкой фазе в трехфазных реакторах с суспендированным катализатором, кроме теплосъема, рециклический поток улучшает условия распределения катализатора в реакционном объеме. [c.290]

    Уровни содержания тяжелых металлов в почвах зависят от окислительно-восстановительных и кислотно-основных свойств последних вод-но-теплового режима и геохимического фона территории. Обычно с увеличением кислотности почв подвижность элементов возрастает. Так, при pH < 7,7 ионная форма цинка в почве представлена гексааква-ионом [2п(Н20)бР, тогда как при pH > 9,1 отмечается существование 2п(ОН)2 или [2п(ОН)4р (191 . Исследования показали, что тяжелые металлы в почвах содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическими комплексными соединениями, которые могут составлять до 99% от общего количества растворимых форм. Кроме того, ионы тяжелых металлов могут бьггь связаны с минералами как часть кристаллической решетки. Так, значительная доля цинка в почве представлена в виде изоморфных соединений в слюдах, обманках и других минералах. Следует отмстить, что кадмий не образует собственных минералов, а присутствует в них в виде примесей. Его особенностью является также то, что он практически не связывается гумусовыми веществами почв. Особенно высокие концентрации тяжелых металлов в почвах могут наблюдаться в районах расположения рудников и автомагистралей. [c.108]

    В последнее время в осадочной хроматографии в качестве носителей часто применяются ионообменные смолы. Следует однако отметить одно отрицательное свойство но-сителей-ионообменников. Речь идет о тех случаях, когда хроматографируемый раствор содержит такую смесь ионов, в которой не каждый ион образует осадок с осадителем. При этом в рабочем слое колонки в результате обмена с одноименно заряженными ионами раствора из ионита вытесняется больше ионов-осадителей, чем может быть израсходовано на осаждение. Например, ионит в качестве обменных противоионов содержит катионы серебра, а раствор содержит смесь хлорида и нитрата натрия. Катионы натрия будут вытеснять эквивалентное количество катионов серебра, осаждающих ионы СГ. Так как имеет место следующее соотношение концентраций ионов  [c.191]

    Адсорбция ионов осадками подразделяется на 1) адсорбцию потенциалобразующнх (потен-циалопределяющих ионов) 2) ионообменную адсорбцию 3) адсорбцию ионных пар 4) моно-молекулярную адсорбцию. Адсорбция — основная причина загрязнения осадков. Особенно легко загрязняются осадки сульфидов, гидроокисей, галогенидов металлов, имеющие очень развитую поверхность соприкосновения с раствором. Соосаждение посторонних растворимых веществ наблюдается часто, хотя они сами по себе данным реактивом и не осаждаются. Например, с сульфатом бария соосаждаются хлориды, нитраты и перманганаты различных металлов. [c.74]

    Нитрогуанидии, нитрат и перхлорат Г.-ВВ и ракетные топлива. Карбонат-добавка к смазочным маслам, буровым р-рам и ПАВ для повышения их эффективности. Фосфат используют для огнезащитной пропитки текстильных материалов. Хромат-ингибитор коррозии. Стеарат и олеат-эмульгаторы масляно-водных дисперсий. Си-ликат-связующее тугоплавкой керамики. Продукты поликонденсации Г. с формалином или гексаметилендиамп-ном-сильноосновные ионообменные смолы. [c.617]


    Комплексные соед. Yb(in) в ряду РЗЭ относительно устойчивы благодаря небольшому ионному радиусу Yb " . Наиб, важны комплексные нитраты, сульфаты, фториды, комплек-сонаты, -дикетонаты и нек-рые др. Соединения И. с этилендиаминтетрауксусной к-той используют при получении чистых препаратов И. методом ионообменной хроматографии и экстракцией трибутилфосфатом. [c.277]

    Для разделения s, Rb и К и получения чистых соед. Ц. применяют методы фракционированной кристаллизации квасцов и нитратов, осаждения и перекристаллизации s3[Sb2 l9], 82[Sn y. Используют также ионообменную хроматофафию на синтетич. смолах и неорг. ионитах (кли- [c.332]

    В качестве активных компонентов мембран для определения нитрат-ионов используются также четвертичные аммониевые и фосфониевые соли. Электроды характеризуются крутизной электродной функции, близкой к теоретической, в диапазоне концентраций от 10 до 10 моль/л. Коэффициенты селективности по отношению к ионам СГ, NO2 , 804 не превышают 10 . Ионообмен-ники на основе солей тетраалкиламмония находят применение для изготовления хлоридных электродов. В качестве органического катиона в них используется диметилдистеариламмоний. Электроды можно применять для измерения активности ионов хлора в присутствии сульфид-ионов, которые оказывают значительное влияние на показания твердых хлоридных электродов. Основные [c.204]

    На предприятиях азотной промышленности для первой стадии регенерации катионитовых фильтров, насыщенных катионами жесткости, рационально применять вместо хлорида натрия хлорид или нитрат аммония, а вместо содово-щелочной смеси использовать раствор смеси карбоната аммония с аммиаком (либо водный раствор аммиака, наполовину карбонизованный диоксидом углерода дымовых газов или содержащимся в воздухе, использованном в декарбонизациопных колоннах ионообменных установок). В результате обработки катионита раствором соли аммония на первой стадии регенерацит он переходит в ЫН4+-форму. На второй стадии регенерации катионита 20%-ным раствором серной кислоты отработанный раствор содержит сульфат аммония и после нейтрализации остаточной кислоты аммиаком может быть направлен в производство сульфата аммония непосредственно или в смеси с отработанным раствором после регенерации ОН -фильтров I ступени (находящихся в 5042--форме). Возможно также получение твердого кристаллического или гранулированного сульфата аммония в распылительных сушилках-грануляторах кипящего слоя. [c.228]

    Серебряную соль осаждают, обрабатывая слегка подкисленный уксусной кислотой теплый раствор оксалата-Сг натрия 1,57о-ным раствором нитрата серебра. Оксалат-С серебра получается [5] из нерастворимой кальциевой соли нагреванием водной суспензии при температуре несколько ниже температуры кипения в течение 30 мин. с ионообменной смолой IR-100H, которую перед этим обрабатывают разбавленной серной кислотой. Горячий раствор фильтруют, осадок тщательно промывают горячей водой, после чего осаждают оксалат-Са серебра, добавляя к фильтрату нитрат серебра. [c.288]

    Основной метод получения карбонатов рубидия и цезия —прокаливание их тетраоксалатов [117], являющихся промежуточными продуктами переработки природного сырья (см. гл. IV). Возможен и ионообменный метод получения карбонатов рубидия и цезия [243, 348]. Для этого через колонку с катионитом КУ-2 в водородной или МН -форме сначала пропускают 5%-ный водный раствор хлорида щелочного металла, а затем после отмывки дистиллированной водой ионита от избыточных ионов хлора производят десорбцию цезия (или рубидия) 7%-ным раствором карбоната аммония, Фильтрат, содержащий обычно 100—150 г/л карбонатов рубидия или цезия и 40—50 г л карбоната аммония, упаривают досуха и прокаливают при 400—500° С, Чистота продукта в данном случае определяется качеством исходных хлоридов и используемых вспомогательных реагентов, В ионообменном методе можно кроме хлоридов применять в качестве исходных солей нитраты и сульфаты рубидия и цезия. Синтез карбонатов путем добавления избытка гидроокиси бария к сульфатам с последующим пропусканием в раствор двуокиси углерода для осаждения ВаСОз не позволяет полностью освободиться от примесей сульфатов [117]. [c.133]

    Фергусон [197] считает заслуживающим внимания комбинированный метод, основанный на осаждении более 957о на МпОг в качестве носителя из 1 М раствора нитрата тория в НЫОз с последующим экстракционным отделением трибутилфосфатом и и ТЬ от осколков, а также описанные выше ионообменные и экстракционные методы. [c.235]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    Нитрат-иоиы часто мешают последующему определению рения. При спектрофотометрических определениях они окисляют восстановитель и рений в степени окисления менее семи, осаждаются при весовом определении, соэкстрагируются при экстракционнофотометрическом и флуориметрическом определениях. Для отделения или уменьшения концентрации нитрат-ионов растворы выпаривают до небольшого объема ( == 1—2 мл) иа водяной бане или нагретом блоке с температурой < 110° С более полное удаление нитрат-ионов достигается при многократном выпаривании растворов с соляной кислотой. Показана возможность применения для этой цели выпаривания с серной кислотой до начала выделения ее паров. Иногда рекомендуют применять методы ионообменной хроматографии. Нитрат-ионы можно удалить из сильнокислых растворов путем восстановления их до низших окислов формальдегидом [325]. [c.234]

    Навеску руды массой 2 г, содержащей 0,02- 1% серебра, растворяют в 15 см концентрированный HNOj. Раствор упаривают до объема 5 см и разбавляют 20 смЗ серной кислоты (1 1). После этого прибавляют твердый нитрат аммония до получения прозрачного раствора и затем выпаривают его. Остаток растворяют в 50 смЗ воды, раствор кипятят, фильтруют и промывают фильтр горячей водой. Фильтрат, объединенный с промывными водами, порциями пропускают через ионообменную колонку. Затем смолу промывают небольшим количеством соляной кислоты (порциями по мере вытекания каждой порции раствора). Этим способом удаляют задержанные сульфат-ионы. По окончании сорбции ионообменную колонку промывают 20 см НС1 (1 2) и 20 см НС1 (1 4). Остаток сорбированных ионов РЬ вымывают из колонки разбавленной азотной кислотой. [c.169]

    I Линейность электродной функции гетерогенного хлоросеребряного электрода с матрицей из силиконового каучука [551] в 0,1 ТкГ растворе хлорида сохранялась в интервале концентраций Вг 10 —10 Л/, а в отсутствие Л1ешающих ионов — до 5-10 М. Нитрат-ионы и более чем 10 000-кратные количества сульфат-ионов не влияют на нее, но иодиды очень сильно искажают ее ход. При одновременном присутствии трех галогенидов рекомендуется их ионообменное разделение, но иод можно независимо определить в отдельной порции раствора с помощью иодоселек-тивного электрода. [c.120]

    В монофафии систематизированы и обобщены литературные данные и экспери-меитальныерезультаты авторов, касающиеся химии соединений висмута и материалов на их основе. Рассмотрены физические и химические свойства висмута и его основных соединений, распространение висмута в природе, его минералы, месторожде-нЯя виСмуговых руд и их переработка, производство и потребление висмута. Приведены сведения о химии водных растворов солей висмута, включая гидролиз и ком-плексообразование висмута в растворах. Особое внимание уделено гидрометаллургии висмута с получением его соединений высокой чистоты, в том числе приготовлению растворов висмута, извлечению, концентрированию и очистке висмута гидролизом, экстракцией его из растворов катионообменными, нейтральными и анионообменными экстрагентами, ионообменному извлечению висмута. Подробно обсуждается химия соединений висмута — оксидов, нитратов, карбонатов, сульфатов, перхлоратов, галогенидов, карбоксилатов, алкоголятов, Р-дикетонатов и др. Впервые систематизированы сведения о химии висмутовых материалов — электротехнических, твердых электролитов, катализаторов, люминофоров, фармацевтических, фотофафических, ионообменных, косметических, пигментов, стекол и др. Рассмотрены перспективы применения висмутовых материалов в разных областях практики. [c.2]

    Физические свойства фосфата циркония, полученного осаждением, зависят от способа приготовления, но два главные типа этого соединения отчетливо различимы. Высокодисперсную микрокристаллическую форму, в которой отношение фосфата к цирконию равно - 2 1, что соответствует 2г0(Н2Р04)2, получают при медленном добавлении реагентов (например, растворов нитрата цикронила и фосфорной кислоты) к интенсивно перемешиваемому нагретому разбавленному раствору серной кислоты [28]. Медленное осаждение в условиях, когда нет значительного избытка ни одного реагента, а растворимость конечного продукта достаточно велика по сравнению с растворимостью при комнатной температуре, приводит к образованию мелких кристаллов, которые слишком малы для непосредственного наполнения ионообменных колонок, но их можно таблетиро- [c.124]


Смотреть страницы где упоминается термин Нитраты ионообменное: [c.108]    [c.282]    [c.193]    [c.118]    [c.93]    [c.401]    [c.218]    [c.249]    [c.249]    [c.249]    [c.234]    [c.124]    [c.62]    [c.17]   
Определение анионов (1982) -- [ c.119 ]




ПОИСК







© 2025 chem21.info Реклама на сайте