Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы, связанные с полимерами

    При ацетилировании целлюлозы в индифферентной среде в присутствии нерастворителей чаще всего в качестве катализатора применяют хлорную кислоту. Получаемый продукт сохраняет при этом волокнистую структуру. Для улучщения растворимости такого первичного ацетата целлюлозы проводят легкое омыление до содержания связанной уксусной кислоты в полимере 60 - 61%. [c.324]


    Для достаточно полного объяснения реакции гетерогенной полимеризации необходимо несколько расширить механизм, предложенный для объяснения гомогенной полимеризации. Реакции инициирования, распространения и обрыва цени, протекающие при гомогенной полимеризации, должны быть изменены с учетом присутствия металлорганических соединений и каталитически активных поверхностей. Для объяснения стереорегулярного характера полимеров, образующихся на твердых катализаторах, в противоположность полимерам атактического типа, получаемым в присутствии гомогенных катализаторов, были предложены три измененных варианта механизма, объясняющего каталитическое действие поверхности. Эти три гипотезы предполагают следующие механизмы а) идущий вверх от поверхности рост полимера в результате ионной координации б) рост полимера вдоль поверхности по механизму связанного иона — радикала в) рост полимера вдоль поверхности в результате ионной координации. [c.296]

    Обобщение материалов о хиральных катализаторах и о катализаторах, связанных с полимерами, в отдельные разделы. [c.8]

    Катализаторы, связанные с полимерами [c.97]

    Тщательное изучение показало, что реакции с катализаторами, связанными с полимерами, имеют отчетливо выраженную кинетику псевдопервого порядка в тех случаях, когда каталитическая часть связана с матрицей длинной несущей цепью — спейсером — такой, чтобы до матрицы было 30—40 атомов. Наиболее ярко параллельный рост каталитической активности и длины цепи наблюдали при использовании в качестве растворителя н-гептана для аммониевых [860], фосфониевых [858] и краун-эфирных [858] каталитических групп. Эти данные позволяют предположить, что каталитическая активность зависит [c.98]

    В связи с тем что углеводороды и полимеры, содержащиеся в отработанной кислоте, представляют собой ненасыщенные соединения, были предприняты попытки гидрировать катализатор, чтобы перевести полимеры в нерастворимые в кислоте насыщенные углеводороды. Пробовали также вести алкилирование под давлением водорода. Для экстрагирования растворенных или химически связанных полимеров из кислоты был опробован ряд растворителей. Была изучена также возможность разделения кислоты и полимеров кристаллизацией кислоты с последующей отмывкой полимеров. Такое направление представляется перспективным,, исследования проводились на нескольких крупных пилотных установках. Следующая за этой статья [2] посвящена этому вопросу. [c.225]


    Группой японских ученых [11] также изготовлены мембраны из катионитов сульфофенольного типа. Конденсацию смолы проводили с поливиниловым спиртом в присутствии кислотного катализатора, что способствовало увеличению степени поперечной связанности полимера и до минимума сокращало его набухаемость. Установлены оптимальные условия синтеза соотношение реагентов, температура и продолжительность конденсации. По утверждению авторов, полученные мембраны обладают высокой электропроводностью и полупроницаемостью. [c.33]

    Хотя межфазные катализаторы обычно не регенерируются, это, конечно, необходимо при применении их в больших количествах или при использовании в непрерывных процессах. В этих случаях нерастворимые, связанные с полимерами катализаторы ( трехфазные катализаторы ) обладают широкими потенциальными возможностями применения. Как будет подробно показано в других разделах, такими катализаторами мо- [c.97]

    При проведении полимеризации в области более низких температур реакция обрыва цепи ослабляется и полимер может оставаться связанным непосредственно с поверхностью катализатора. В этом случае процесс напоминает полимеризацию с образованием губчатых полимеров. Некоторое сходство обнаруживается также с живыми полимерами, наблюдаемыми при инициировании полимеризации натрием в нафталине [95]. Результаты изучения кинетики полимеризации убедительно доказали большую продолжительность существования растущего активного центра при гетерогенной полимеризации [57, 72]. [c.298]

    Кроме стереоизомерии, большое влияние на свойства полимера оказывает изомерия, связанная с формой макроцепи. Например, используя катализаторы Циглера — Натта, можно синтезировать полиэтилен строго линейного строения (практически без боковых ответвлений), который имеет большую плотность, кристалличность и более высокую температуру плавления. [c.398]

    Итак, ставится вопрос о реализации в катализе общего для некоторых классов катализаторов энергетического механизма активации, связанного хотя бы с частичной рекуперацией энергии в системе н с возможностью заметного увеличения активности гетерогенных катализаторов в результате снижения энергетического порога активации. Катализаторы, использующие механизм рекуперации и передачи энергии реакции, действуют уже как системные катализаторы, для которых иоситель представляет неиндифферентную подложку, но входит в общую каталитически действующую систему через функцию энергетического обмена. Задача состоит в том, чтобы создать на основе активных центров и достаточно термостабильных макромолекул, например соответствующих полимеров, систему с большой степенью рекуперации энергии т) и ее отдачи у. [c.121]

    Дяя более полного использования потенциала серной кислоты ее замену на промышленных установках типа 25/4 осуществляют периодически. В процессе эксплуатации кроме воды в кислоте накапливается кошлекс органических соединений, так называемые связанные полимеры. Рабочий диапазон концентрации серной кислоты в катализаторе составляет 84-98 . Свежая кислота недостаточно активна, так как не содержит связанных полимеров, являющихся сокатализатором. Как известно [1,2], для достижения наилучшего качества алкилбензина необходимо содержание в катализаторе 94 серной кислоты и около 4 связанных полимеров. Близкий к этому состав можно поддерживать, непрерывно заменяя часть катализатора свежей кислотой. В зависимости от аппаратурного оформления и качества сырья технико-экономические показатели процесса могут быть различными. [c.145]

    Способ отделения остатков катализатора от полимера в любом с. 1учае неразрывно связан с технологией предшествующих стадий производства полипропилена, т. е. с полимеризацией и удалением атактических фракций. Видимо, наиболее распространенным процессом является отмывка остатков катализатора добавлением безводных высших спиртов (изопропанол, пропанол, бутанол и т. п.) к. суспензии полипропилена в гептане без доступа воздуха. [c.51]

    Базовый научный стержень материала - приложение теории кислотно-основ-ного взаимодействия к рассмотрению элементарных актов полимеризации изобутилена - сочетается с использованием квантово-химических расчетов катализаторов, связанных активных центров, отдельных элементарных стадий процесса и критическим анализом некоторых экспериментальных фактов. Наряду с сохранением содержащихся в ранее вышедшей монографии основных разделов, в новой редакции монографии освещается и новый круг вопросов, к числу которых следует отнести макрокргнетическое огшсание процесса полимеризации изобути-лена, описание сбштансированной схемы получения полимеров изобутилена в промышленности, возбуждение полимеризации изобутилена с помогцью иммобилизованных катионных катализаторов и др. Внимание обращается и на экологические аспекты синтеза и применения полимеров изобутилена и пр. [c.4]


    Согласно ион-радикальному механизму Фридлендера, инициирование происходит на активных центрах, связанных с поверхностью твердого катализатора. Связанный атом металла реагирует с хемисорбированной на поверхности катализатора молекулой олефина. Благодаря адсорбции олефина на поверхности происходит увеличение концентрации мономера даже при низких его давлениях. Поверхность выступает как ориентирующая сила и поставляет мономер к концу растущей цепи в правильном, упорядоченном положении. Реакция олефина со связанным атомом металла приводит к образованию ион-радикала, реагирующего с последующими молекулами олефина. По мере роста цепи полимер десорбируется с поверхности катализатора и замещается мономером, который в свою очередь ориентируется поверхностью. Роль жидкой углеводородной реакционной среды в образовании полимера высокого молекулярного веса и большой плотности, вероятно, сводится к облегчению десорбции полимера с поверхности катализатора. Предполагается [17], что жидкий углеводород дает возможность существовать поверхности раздела жидкость — твердое тело, на которой может быть ориентирована растущая полимерная цепь и на которой она может реагировать с мономером, поступающим из раствора или из газовой фазы. [c.337]

    Катализатор не остается связанным с полимерной цепью. Колк-. ли [37], проводивший опыты с пятихлористой сурьмой (содержащей радиоактивную сурьму) в качестве катализатора, очисткой полимера с последующим хроматографированием на окиси алюминия или активированном угле полностью освобождал полученный каталитически полимер от радиоактивности. [c.304]

    В 1996 г. на двух установках каталитического крекинга был освоен катализатор ЭМКАХ фирмы Энгельхард . Это привело к повышению температуры в реакторе с 445 до 470°С и увеличению конверсии на 15%, что существенно повысило содержание бензиновых фракций (Сз и более) в жирном газе. При этом октановое число бензина достигло 78 пунктов по моторному топливу, б) На НУНПЗ в 1953 г. были введены 2 установки серно-кислотного алкилирования, оснащенные вертикальными контактными реакторами. Одним из основных факторов, влияющих на показатели процесса и качество полученного алкилбензина, является конценфация серной кислоты. Для достижения наилучшего качества алкилбензина необходимо содерлсание в катализаторе 94% серной кислоты и около 4% связанных полимеров. [c.30]

    Для подтверждения этого предположения была проведена блоксополимеризация аллена с этиленом с переходом в газовую фазу. Сополимеризацию этилена и аллена в газовой фазе проводили на эффективных для полимеризации этилена в газовой фазе катализаторах — Т1С14-ьА1(А1к)з — активных и при полимеризации аллена. Проведение процесса в газовой фазе позволяет избежать снижения эффективности катализаторов, связанного с наличием диффузионных торможений в вязкой среде. Полимеризацию осуществляли в две стадии. Вначале реакцию проводили в среде легкого углеводорода (гексан) с целью получения носителя катализатора. После получения заданного количества полимера с равномерно распределенным в нем катализатором растворитель отгоняли. Вторая стадия — полимеризация этилена в газовой фазе — начинается при концентрации углеводородного растворителя менее 1 % в реакционном объеме. Кинетические закономерности полимеризации этилена в растворителе и в газовой фазе на каталитической системе Т1С14- -А1 (А1к)з имеют сходный характер, однако скорость полимеризации в газовой фазе в 2—3 раза выше по сравнению с жидкофазной. [c.102]

    Чтобы добиться хорошего суспендирования и смешения компонентов многофазной системы, скорость перемешивания при полимеризацит должна быть не ниже 500 об/мин. Хотя при используемых низких давлениях (3,5—10 атм) и температурах (50—75°С) производительность катализатора невысока, показатель стереорегулярности, как правило, превышает 90%. Однако для достижения показателя стереорегулярности 96— 97%, требуемого большинством промышленных потребителей, из полипропилена, полученного суспензионной полимеризацией, приходится экстракцией удалять атактический полимер. Поэтому для процесса полимеризации в суспензии необходимы большие капитальные и текущие затраты, связанные с очисткой и рециркуляцией растворителя, обезвреживанием сточных вод, экстракцией полимера и его обеззоливанием. В настоящее время процесс полимеризации в суспензии используется в США компаниями Геркулес , Амоко , Экссон и ЮСС кемиклс . [c.202]

    Главной особенностью полимеризации в растворе является ее проведение при температурах 110—150°С. Это делается для того, чтобы обеспечить растворение полимера. Остаток катализатора можно удалить фильтрацией горячего раствора полимера. При этом исключаются затраты, связанные со стадией обез-золивания, и получается очень чистый полипропилен. Полимер выделяют из раствора кристаллизацией и центрифугированием. Для сокращения времени пребывания в реакторе и повышения [c.202]

    На поверхности каталитического поляризованного комплекса происходит хемосорбция молекул мономера, часть из которых входит в ион между алюминием и алкилом (арилом), связанным с алюминием, и начинает нолимеризационную цепь. При этом мономер присоединяется отрицательной мети./кшовой группой 1 алюминию (Ме). Рост цепи происходит путем внедрения молекул мономера между металлом катализатора (Ме) и полиме1 Ю11 цепью (Р), а обрыв осуществляется за счет передачи водорода от цепи к мономеру или к молекуле катализатора или посредством передачи цепи молекуле растворителя. Во всех случаях обрыва роста макромолекул активный центр вновь регенерируется. При передаче водорода молекуле катализатора проис ходит поляризация атома водорода, вследствие чего образуется новый активный центр, который может далее участвовать в реакции инициирования (см. приведенную ниже схему обрыва цепи). При этом в полимере образуются двойные связи, которые в большинстве случаев нахо.> ятся н концевых нинилиденовы,  [c.148]

    Однако вызывает сожаление, что авторы почти ие упоминают работы русских и советских химиков, так много сделавших для решения многих научных и прикладных проблем, связанных с ФС. Так, еще в 1912 г. Г. С. Петров и И. П. Лосев впервые разработали промышленный метод получения ФС (так называемых карбо-литов) в присутствии кислых катализаторов. Позднее они же вместе с А. А. Ваншейдтом впервые развили теоретические основы синтеза ФС в щелочных средах. В послевоенные годы усилиями А. А. Берлина, В. Д. Валгина, С. В. Виноградовой, Л. А. Игонина, И. Ф. Канавца, В. В. Коршака, В. А. Попова, В. А. Сергеева, Е. Б. Тростяпской и многих других были развиты научные основы химии и технологии как самих ФС, так и разнообразных материалов на их основе. Мировую известность получили работы советских ученых в решении таких кардинальных проблем химии и технологии полимеров, как синтез высокотермостойких и негорючих ФС, получение высокопрочных пенопластов и пресс-материалов на основе ФС, разработка порошковых и лакокрасочных материалов, создание широкой гаммы фенольных антиоксидантов и т. д. [c.11]

    Полиэтилен. Строение полиэтилена схематически представлено на рис. 2. Степень кристалличности, зависящая от числа боковых цепей в молекулах полимера, закономерно возрастает от обычного полиэтилена, приготовленного полимеризацией под высоким давлением, к полимеру, получаемому при применении новых твердых катализаторов. Боковые цепи, связанные с главной цепью полимера, создают аморфные зоны, так как нарушают регулярность строения, обусловливающую кристалличность продукта. Кристалличность обычного промышленного полиэтилена вследствие значительной разветвленности его строения, составляет примерно 60—70% [82]. Полиметилен, полученный разложением дпазометана, имеет линейную цепь, состоящую из метиленовых групп кристалличность его превышает 95% [54]. Между обеими этими крайностями находятся новые типы полиэтиленов со степенью кристалличности в пределах 70-95%. [c.290]

    Поверхность гетерогенных катализаторов, по-видимому, содержит во время полимеризации активные центры и, кроме того, способствует протеканию реакций закономерного роста полимера. Полимеры регулярного строения образуются вследствие подавления до минимума (благодаря присутствию поверхности) реакций, ведущих к передаче цепей растущего полимера от одной молекулы другой, т. е. процессов, вызывающих разветвление и структурную нерегулярность полимера. Полимеризация инициируется в определенных специфических точках поверхности, так что растущие молекулы полимера изолированы одна от другой [57]. Чтобы предотвратить реакции передачи цепи между растущими молекулами полимера, инициирующие вещества — независимо от того, будут ли это ионы, свободные радикалы или ионные радикалы — должны оставаться связанными с изолировавными центрами поверхности. [c.297]

    Механизм координирующего действия поверхности позволяет объяснить полимеризацию, протекающую без участия больших удельных поверхностей. В этом случае представляется вполне возможным рост полимера вверх от поверхности. Эта гипотеза аналогична координирующему механизму, но позволяет более детально объяснить способ внедрения олефинов в цепь полимера и важное значение поверхности. Он учитывает также большое сходство кристаллического строения двух- и треххлористого титана и окислов металлов,, применяемых в процессах, проводимых на предварительно приготовленных твердых катализаторах. Вследствие слоистого строения кристаллов, присутствующих в гетерогенных нолимеризующих катализаторах, представляется весьма вероятной адсорбция на ребрах, дефектах или дислоцированных участках кристалла, соответствующая гипотезам связанного радикала или координирующего действия поверхности. [c.301]

    Особым типом полимеризации является координационная полимеризация. Она представляет собой реакцию между мономером и полимером, которые координированы с каталитическим центром определенного типа. Обычно применяют гетерогенные катализаторы наиболее известным нз них является катализатор Циглера — Натта, который получают взаимодействием триал кил алюминия с четыреххлористым титаном в инертном углеводородном растворителе. Существует множество аналогичных систем. Полагают, что инициирующая труппа и, следовательно, растущая полимерная цепь координируются с центрами титана на поверхности катализатора. Титан может также принимать мономер в свою координационную сферу в качестве л-связанного лиганда. Затем две координационно связанные частицы реагируют с образованием удлиненной алкильной цепи и освобождают место, доступное для я-координации другой мономерной молекулы. Истинная структура активного центра и вопрос, насколько тесно связан с происходящим процессом другой присутствующий металл (алюминий), не установлены. [c.408]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Заметим, что и электрофильная активность присуща только образцам иммобилизованных катализаторов, приготовленных в присутствии ароматических соединений. По-видимому, кроме активации связанной комплексной кислоты, присутствие ароматического растворителя обеспечивает сольватирующую (растворяющую) способность в отношении образующегося на поверхности катализатора полимера, в частности полиизобутилена. В случае высокополярных мономеров, например вышеуказанного триметршвинилоксисилана, она оказывается недостаточной, и полимеризация не имеет места [170,171]. При сополимеризации винилсили-лового эфира с изобутиленом, несмотря на заметно меньшую активность последнего, происходит, очевидно, ослабление хемосорбции полярного полимера на полярной поверхности иммобилизованного катализатора и образование со полимерного продукта. Так как индивидуально взятые компоненты - сульфокатионит и алюми-нийхлорид - вызывали только раздельную полимеризацию указанных иономеров, иммобилизованная комплексная система сближает соотношение их активностей. [c.65]


Смотреть страницы где упоминается термин Катализаторы, связанные с полимерами: [c.341]    [c.98]    [c.102]    [c.299]    [c.106]    [c.54]    [c.55]    [c.87]    [c.87]    [c.43]    [c.147]    [c.227]    [c.207]    [c.279]    [c.351]    [c.462]    [c.135]    [c.517]   
Смотреть главы в:

Межфазный катализ -> Катализаторы, связанные с полимерами




ПОИСК





Смотрите так же термины и статьи:

Полимеры как катализаторы и суб



© 2025 chem21.info Реклама на сайте