Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфокислоты ароматические определение серной кислоты

    Необходимо отметить, наконец, что в процессе получения сульфокислот алифатического и ароматического ряда проявляется одно из характерных различий между парафиновыми и ароматическими углеводородами. Это различие проявляется в легкости, с какой ароматический углеводород образует сульфокислоту при действии умеренно концентрированной серной кислоты, по сравнению с трудностью введения сульфогруппы в углеводороды парафинового ряда. Для сульфирования парафиновых углеводородов требуется дымящая серная кислота, т. е. 100%-ная серная кислота, содержащая сво-бодный серный ангидрид (олеум). На этом различии основывается один из способов определения и выделения ароматических углеводородов из нефтяных фракций бензиновую или керосиновую фракцию встряхивают некоторое врегля с 1—2 объемами концентрированной кислоты, в результате чего ароматические углеводороды образуют сульфокислоты, которые растворяются в сернокислотном слое и отделяются вместе с ним, тогда как парафиновые и циклопарафиновые углеводороды (нафтены) остаются незатронутыми. [c.82]


    Определение серной кислоты и сульфатов в присутствии ароматических сульфокислот [c.100]

    ОПРЕДЕЛЕНИЕ СЕРНОЙ КИСЛОТЫ В ПРИСУТСТВИИ АРОМАТИЧЕСКИХ СУЛЬФОКИСЛОТ [c.118]

    Для определения группового углеводородного состава керосиновых фракций при перегонке нефти отбирают фракции 200—250 и 250—300 . В этих фракциях определяют плотность, коэффициент рефракции, максимальную анилиновую точку. Затем 50л л каждой фракции загружают в соответствующие по величине делительные воронки. Содержимое воронки обрабатывают три раза серной кислотой (98,5%), задавая каждый раз по 50 мл. Перемешивать керосин серной кислотой следует каждый раз не менее 30 мин. с последующим отстоем 3 часа. После третьей обработки сульфированную фракцию промывают 1—2 раза водным спиртом (1 1) для удаления сульфокислот и обрабатывают водным раствором щелочи до щелочной реакции на метиловый оранжевый или фенолфталеин промывают дистиллированной водой, сушат СаСЬ и подвергают тому же анализу, что и исходные фракции. Содержание ароматических углеводородов вычисляют по уравнениям [c.514]

    Реакция запекания позволяет получать чистые сульфокислоты многих первичных и вторичных аминов при минимальной затрате серной кислоты. Эту реакцию осуществляют путем длительного нагревания бисульфатов ароматических аминов при определенной температуре, обычно не превыщающей 200°С. Раньще сухие бисульфаты аминов нагревали на металлических противнях в специальных печах при заданной температуре, иногда под вакуумом. В настоящее время эту операцию проводят, нагревая бисульфаты аминов в высококипящих органических растворителях, например в полихлоридах бензола. Это обеспечивает значительно более равномерный обогрев и исключает подгорание твердого продукта. [c.73]

    Ароматические углеводороды реагируют с концентрированной серной кислотой во многих случаях уже при комнатной температуре. Образующиеся сульфокислоты переходят в сернокислотный слой. Эту реакцию используют для определения ароматических углеводородов. Метод сводится к обработке точно отмеренного объема А углеводородной смеси серной кислотой и определению объема Б углеводородного остатка, не вошедшего в реакцию. Разность между объемами (А—Б) соответствует суммарному содержанию ароматических соединений в данной пробе. [c.117]

    Кинетика многих из рассмотренных нами выше реакций ароматических соединений прослежена еще недостаточно. Мы отмечали уже не раз тот факт, что многие реакции нельзя рассматривать как односторонние, т. е. идущие до конца. Реакция, начавшись с большой скоростью в направлении образования определенных веществ, под конец замедляется и в дальнейшем может сопровождаться обратной реакцией разложения продуктов реакции. Пример сульфирование и гидролиз сульфокислот в серной кислоте от образовавшейся воды. [c.469]


    Остаток серной кислоты (сульфогруппа — ЗО ОН) может вводиться в ароматическое соединение для придания ему определенных свойств (например, растворимости в воде) или для последующего замещения другими группами (например, гидроксильной группой). Сульфокислоты используются также в качестве смачивающих и моющих веществ, в синтезе дубителей кожи и т. д. [c.442]

    Сопи сульфокислот с органическими основаниями. Многие соли, полученные из ароматических сульфокислот и различных аминов, обладают определенной температурой плавления, мало растворимы в воде и поэтому могут быть применены для разделения и идентификации как аминов, так и сульфокислот. Так, например, хини-зарин-2-сульфокислота (1,4- диоксиантрахинон- 2- сульфокислота) предложена для осаждения различных простых алифатических аминов и аминокислот [18]. Сульфокислота может быть затем получена обработкой соли амина гидроокисью бария с последующим разложением бариевой соли серной кислотой. В одной из более новых работ [19] приводятся данные о величине произведения [c.199]

    Наконец, повышение температуры сулы )ирования сверх определенного предела влечет за собой резкое понижение выхода сульфокислот вследствие окисления и разрушения ароматического ядра. Это объясняется усилением окислительного действия серной кислоты и олеума при высоких температурах. [c.207]

    Для определения количества ароматических углеводородов в сырье можно использовать также их способность хорошо извлекаться отдельными селективными растворителями (в том числе анилином и сернистым ангидридом), образовывать сульфокислоты со 100%-ной серной кислотой и кристаллические кислоты при окислении перманганатом калия, а также другие характерные свойства ароматических углеводородов. [c.42]

    Применение Н.2804 в органическом анализе. Кроме мокрого озоления органических веществ (см. разд. 5.6) серная кислота применяется для проведения гидролиза эфиров н углеводов. Ароматические сульфокислоты разлагают нагреванием прп 140— 190 "С с 60-70 %-ной серной кислотой [4.251]. Иногда гидролиз протеинов проводят 3 М серной кислотой, а не хлороводородной кислотой [4.252]. При определении оксипролина к 5 г пробы добавляют 1 г хлорида олова (И) и гидролизуют 3 М серной кислотой при ПО °С 16 ч 14.2531. [c.85]

    Методы определения ряда соединений уксусной и серной кислот в ацетилирующих смесях а-метилпиридина (а-пиколина) в смеси с формалином ароматических сульфокислот (толуол-,бен-золсульфокислоты и др.) бензолсульфокислоты в смесях с серной и др. описаны в [9]. [c.140]

    Для определения количества ароматических углеводородов, которые возникли за счет шестичленных цикланов, образовавшихся в результате изомеризации углеводородов пентаметиленового ряда, полученный катализат обрабатывался концентрированной серной кислотой (с 3% 80з). При этом было найдено 26% (по объему) ароматических углеводородов. После переведения в соответствующие сульфокислоты, гидролиза последних и выделения в чистом виде эти ароматические углеводороды выкипали в пределах 144—168° и имели 1,4992 и 0,8712. [c.195]

    Дегидратация независимо от того, проводится ли она в жидкой или газовой фазе, всегда катализируется кислыми катализаторами, к числу которых отпо-сится целый ряд веществ. Наиболее распространенными из них являются нелетучие кислоты, например серная или фосфорная кислота, ароматические сульфокислоты, кислые соли, как, нанример, сульфаты и фосфаты, хлористый цинк, хлористый алюминий и другие. Кроме перечисленных соединений, катализаторами дегидратации являются некоторые окислы и ангидриды. К ним относятся окислы алюминия и тория, фосфорный и фталевый ангидриды, особенно в присутствии следов серной кислоты или бензолсуль-фокислоты, и многие другие соединения. Имея в виду побочные реакции, следует с известной осторожностью повышать температуру. При этом определенное значение имеет как применяемый катализатор, так и сам способ дегидратации, например  [c.27]

    Быстрым методом определения объемного содержания ароматических углеводородов в бе-нзиновых фракциях является метод сульфирования. Определенный объем бензиновой фракции энергично встряхивают в сульфаторе с избытком раствора фосфорного ангидрида в концентрированной серной кислоте. Ароматические углеводороды сульфируются и в виде сульфокислот переходят в серную кислоту. Затем измеряют объем фракции. По уменьшению объема фракции можно рассчитать объемное процентное содержание ароматических углеводородов. [c.75]

    Как химический метод, дающий определенный производственный эффект, сульфирование известно уже более 100 лет. Так, еще в конце XVI11 века сульфированием естественного индиго приготовлялся саксонский синий — дисульфокислотэ индиго. Получение индивидуальных сульфокислот ароматических углеводородов относится к 20-м г. XIX столетия. В 1819 г. Бранд (Brande) наблюдал образования нового соединения из нафталина от действия серной кислоты, в 1826 г. Фарадей получил в нечистом состоянии две изомерных сульфокислоты нафталина. [c.72]


    Опыты показывают, что два или три объема 94—98% серной кислоты количественно удаляют из бензинов все ароматические углеводороды. Дымящая серная кислота, даже с небольшим содержанием серного ангидрида, не может применяться, так как она энергично реагирует с другими классами углеводородов, особенно с нафтеновыми углеводородами, поэтому при определении ароматики с дымящей серной кислотой получается неверный результат анализа. Негш-сыщенные углеводороды реагируют с серной кислотой разными путями, давая эфиры серной кислоты, спирты, полимеры и смолы. Эти реакции будут подробно рассмотрены в главе шестой. Часть образовавшихся растворимых в серной кислоте продуктов (сульфокислоты) удаляется с кислым гудроном. Другие продукты реакции серной кислоты и ненасыщенных углеводородов (диалкилэфиры и полимеры) нерастворимы в серной кислоте и остаются в обрабатываемом бензине. Температура кипения этих соединений выше конца кипения исходного бензина. Поэтому образовавшиеся высококипящие продукты могут быть выделены при перегонке бензина до той же температуры, до которой он перегонялся перед обработкой. Остаток от перегонки состоит из высококипящих продуктов, образовавшихся в результате обработки ненасыщенных углеводородов серной кислотой. Некоторые димеры могут кипеть в пределах исходного бензина, например, димеры бутиленов или амиленов, но они могут полимер1изоваться и дальше в высококипящие полимеры. Если полимеризация олефинов в высококипящие полимеры проходит полностью, то йодное число обработанных серной кислотой и перегнанных бензинов должно быть равно нулю. [c.292]

    Одним из промежуточных проду)кто.в синтеза этих красок является сложная ароматическая сз чьфокислота. Более 70 лет назад русский ученый М. А. Ильинский пытался получить ее из сложното органического вещества антрахияона. По го расчетам, при нагревании до 100° в присутствии серной кислоты из антрахинона должна была образоваться сульфокислота определенного строения. Много опытов поставил Ильинский, но кислоты, необходимой для синтеза ализариновой краски, не получалось. Однажды во (время опыта разбился терм<ометр, и капля ртути попала в колбу, где протекал синтез. И вот в колбе, как по волшебству, образовалась сульфокислота, которую так тщетно и долго искал ученый. Капля ртути направила процесс по желаемому направлению. Трудно сказать, достоверна ли эта история, по ясно одно ничтожное количество постороннего вещества — ртути — оказало удивительное действие па химический процесс. [c.3]

    В основе этого метода лежит реакция сульфирования ароматических углеводородов (см. выше). Так как реакция эта с крепкой серной кислотой легко протекает во многих случаях уже при комнатной температуре, причем образующиеся сульфокислоты переходят в серпокислотный слой, то все определение, по существу, сводится к обработке точно отмеренного объема А углеводородной смеси серной кислотой и объемному определению углеводородного остатка В, не вошедшего в реакцию. Разность между отмеренными объемами А — В) дает суммарное содержание ароматики во взятой пробе. [c.100]

    Растворы ароматических сульфокислот в полярных растворителях сильно ионизированы [1]. Так, например, определение степени ионизации по электропроводности растворов и скорости каталитического разложения этилдиазоацетата, л-толуол- и л-азо-бензолсульфокислот в ледяной уксусной кислоте [1в] показало, что эти кислоты ионизированы слабее, чем хлорная кислота, но сильнее, чем серная. 2,4-Диметоксибензолсульфокислота несколько менее активна, чем серная кислота, но активнее, чем азотная. [c.197]

    Метод дает обычно достаточно точные результаты, если в исследуемой фракции нет ароматических углеводородов. При наличии последних, даже при пользовании 85-проц. серной кислотой, имеют место реакции конденсации олефинов с ароматическими углеводородами, искал ающие результаты. В связи с этим сернокислотный метод обычно используется для суммарного определения олефинов и ароматических углеводородов (98—99-проц. Н2504). Наряду с алкил-серными кислотами, полимерами и алкил-бензолами продуктами реакции в этом случае являются и ароматические сульфокислоты. [c.351]

    Сульфокислоты являются очень сильными кислотами. Ароматические сульфокислоты в полярных растворителях сильно диссоциированы. Например, п-толуол- и п-азобензолсульфокислоты в растворе уксусной кислоты оказались более сильными кислотами, чем хлорная (НС1О4) или серная кислоты [17]. 2,4-Диметоксибензол-сульфокислота сильнее серной или азотной кислот, а 2,4-динитро-бензолсульфокислота в водном растворе сильнее любой минеральной кислоты [18]. Бензол сульфокислота в растворе безводной муравьиной кислоты по силе не отличается от серной кислоты [19], а в растворе метанола или этанола она представляет собой сильный электролит [20]. Для бензолсульфокислоты р/Са равен 0,6, а для а-нафталинсульфокислоты 0,74 [21]. С достаточной надежностью был определен р/Са метансульфокислоты СНзЗОзН. [c.451]


Смотреть страницы где упоминается термин Сульфокислоты ароматические определение серной кислоты: [c.121]    [c.79]    [c.1232]    [c.325]    [c.100]    [c.32]   
Технический анализ в производстве промежуточных продуктов и красителей Издание 2 (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Сульфокислоты ароматические



© 2025 chem21.info Реклама на сайте