Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные системы упругие

    Возвратимся к рассмотрению механических свойств твердообразных микро-. гетерогенных и коллоидных систем, об- ладающих истинной упругостью. К таким системам относятся поликристаллические. металлы, самые разнообразные структурированные дисперсные системы, гели, концентрированные растворы мыл, а также высокомолекулярные вещества н их концентрированные растворы, способные проявлять не только упругость, но и высокую эластичность. [c.333]


    В процессе развития науки о дисперсных системах отдельные ее разделы выделились в самостоятельные научные дисциплины теория броуновского движения, послужившая основой молекулярной и современной статистической физики развитие более общих представлений о природе растворов, которые включают в себя как частный случай учение об истинных растворах низкомолекулярных веществ физико-химия полимеров и их растворов и, наконец, реология — наука о деформационных свойствах материалов, обобщающая учение о деформации (течении) жидкостей, упругих материалов (физико-химическая механика) и промежуточных по свойствам материалов, к числу которых относятся многие дисперсные системы. [c.6]

    Для второй группы, т. е. структурированных дисперсных систем, характерным является развитие в той или иной степени упруго-пластических свойств, связанных с образованием структуры и возможностью изменения агрегатного состояния системы, с переходом в твердое тело. Частицы дисперсной фазы в таких системах связаны межмолекулярными силами в одну общую структуру, распространяющуюся на весь объем, занимаемый дисперсной системой. [c.252]

    Растворы некоторых высокомолекулярных соединений, особенно природного происхождения, при растворении даже в небольших концентрациях образуют систему, текучесть которых очень низка. В таких системах возможна упругая деформация, и заметная скорость течения обнаруживается лишь при определенном напряжении сдвига. Такие системы называют студнями . По своим механическим свойствам они подобны гелям — структурированным дисперсным системам. Образование студней наблюдается при охлаждении растворов белковых веществ, например желатина. Причины образования студней белковых веществ окончательно не выяснены. Предполагается, что структурирование их растворов происходит в результате взаимодействия гидрофобных частей макромолекул и образования связей между разноименно заряженными группами. [c.224]

    Лиофобные дисперсные системы характеризуются значительной удельной поверхностью и свободной поверхностной энергией, которая, естественно, стремится к уменьшению. В чистых жидкостях это проявляется в стремлении к уменьшению величины поверхности (образование капель, коалесценция капель). Соотношение поверхностных натяжений двух жидкостей определяет условия растекания (уравнение IV. 10), или равновесного контакта (IV. 2), а соотношение поверхностных натяжений на границе раздела трех фаз, из которых одна является твердой, определяет условия смачивания (IV. 3). Для искривленных жидких поверхностей раздела характерно наличие капиллярного давления (IV. 4) и изменение упругости пара (IV. 5). [c.99]


    Начиная с 1930- г., М. П. Воларович и его сотрудники проводят интересные исследования по реологическим свойствам коллоидных систем. Они изучают режимы и особенности течения и механических свойств различных дисперсных систем минеральных суспензий, торфяной массы, мыла и др. Им удалось найти ряд общих математических соотношений, позволяющих решить на основании реологических свойств вопрос о структуре дисперсной системы. Они предложили много оригинальных приборов для исследования упруго-вязких свойств дисперсных систем. [c.7]

    В классической физике механические свойства тел изучались без учета физико-химических факторов, особенностей состава и строения (структуры самого тела) и окружающей среды. Обычно проводилось резкое различие между твердыми телами и жидкостями. Дальнейшее развитие молекулярной физики и в особенности коллоидной химии с учением о структурообразовании в дисперсных системах показало, что, с одной стороны, различие между жидкостями и твердыми телами носит кинетический (релаксационный) характер, а с другой, — что между предельными состояниями — идеально упругими твердыми телами и вязкими жидкостями осуществляется непрерывный ряд переходов, образующих огромное многообразие реальных тел промежуточного характера. Следовательно, учение о механических свойствах должно стать крупной самостоятельной главой современной физикохимической науки. [c.172]

    В книге обобщены результаты проведенных авторами исследований фазовых переходов в дисперсных системах, на основе которых установлен новый механизм укрупнения частиц дисперсной фазы за счет переконденсации, обусловленный различным влиянием размера частиц на линейную скорость их роста и растворения (испарения) в условиях периодического колебания температуры и концентрации дисперсионной среды. Показано, что этот механизм имеет место в дисперсных системах с разным агрегатным состоянием вещества дисперсной фазы и дисперсионной среды при ограниченной растворимости (упругости пара) вещества дисперсной фазы в дисперсионной среде, периодическом колебании температуры и концентрации дисперсионной среды, полидисперсности частиц. Приведены примеры практического применения колебательного механизма переконденсации в различных условиях существования и развития дисперсных систем при массовой кристаллизации веществ из растворов, при твердении минеральных вяжущих веществ, при гидротермальной обработке адсорбентов и катализаторов, в аэрозолях и др. [c.2]

    Если скорость растяжения пленки настолько велика, что за время ее деформирования не успевает установиться равновесие между адсорбционным слоем и внутренней (объемной) частью пленки, то модуль эффективной упругости оказывается повышенным. Это способствует большему, чем в случае равновесного эффекта Гиббса, увеличению устойчивости пленок и соответственно дисперсной системы. Степень установления равновесия между адсорбционным слоем и внутренней частью пленки, а следовательно, и величина модуля эффективной упругости определяются скоростью диффузии ПАВ из объема пленки к ее поверхности и зависят от типа ПАВ. При быстром и особенно локальном деформировании пленки нарушается и равновесное распределение вещества по поверхности пленки, что также приводит к повышению модуля эффективной упругости. В данном случае существенная роль принадлежит поверхностной миграции молекул ПАВ из области с высокой адсорбцией (недеформированная часть пленки) в область с пониженным значением Г (деформированная часть). Этот фактор устойчивости, проявляющийся в отсутствие равновесия на поверхности и равновесия между адсорбционным слоем и внутренней частью пленки, называют эффектом Марангони — Гиббса. [c.254]

    Методы кинетической теории материи было бы желательно при-.менить для описания динамики плотных газов, законов движения неоднородных сред в нижних слоях атмосферы, а также законов движения жидких и газообразных сред при высоких давлениях. Первые попытки обобщить кинетическое уравнение Больцмана яа плотные газы были сделаны в первой половине нашего века работах Энскога, где молекулы газа рассматривались как твердые упругие сферы конечного диаметра а. Так как взаимодействие таких молекул происходит практически мгновенно, то представлялось возможным не зп1итывать тройных соударений и соударений более высокого порядка. Энскогом были проведены необходимые расчеты и вычислены коэффициенты переноса. Вычисления локазали, что теоретические значения коэффициентов переноса совпадают с опытными значениями до давлений в несколько сот атмосфер. Как видно, первые попытки применения кинетической теории для описания динамики плотных газов дали вполне удов- Летворительные результаты, поэтому представляется целесооб- разной дальнейшая разработка этой теории для описания динамики плотных сред, в первую очередь применительно к неоднородным редам, в частности к дисперсным системам. [c.102]


    Структурно-механическая прочность нефтяных дисперсных систем определяется главным образом толщиной сольватной оболочки, образующейся вокруг частиц твердой фазы (надмолекулярной структуры). Такие оболочки имеют определенную упругость, присущую твердому телу, и вызывают [39] расклинивающее давление, которое в совокупности с внешним давлением действует на частицы твердой фазы, стремясь их раздвинуть, оттолкнуть друг от друга. Чем меньше толщина сольватной оболочки, тем выше структурно-механическая прочность нефтяной дисперсной системы. [c.15]

    В дисперсной системе, представляющей собой упруговязкое тело Максвелла, под действием нагрузки мгновенно развивается упругая относительная деформация, равная 400 %- Рассчитайте начальное нап])яжение в системе и промежуток времени, за которое оно умсгнь-шится в 100 раз. Модуль упругости и коэффициент ньютоновской вязкости системы составляют соответственно 500 Н/м и 50 Па-с. [c.208]

    На различных стадиях наполнения нефтяной дисперсной системы сложными структурными единицами могут формироваться золи (свободнодисперсные системы), студни и гели (связнодисперсные системы). В зависимости от типа образовавшейся НДС различна и ее прочность. НДС обладают способностью сопротивляться расслоению под влиянием гравитации, т. е. обладают устойчивостью. Внещние силы их деформируют, а внутренние силы упругости (силы сцепления) стремятся сохранить ее форму, обусловливая их прочность. Структура ССЕ определяет также механические свойства НДС - вязкость, упругость, пластичность, - и потому эти свойства часто называют структурно-механическими свойствами. [c.168]

    Каркас охватывает собой весь объем дисперсной системы, которая теряет при этом свою легкоподвижность золь переходит в гель (студень). Такие студни легко образуются белками (например, студень желатина), крахмалом (крахмальный клейстер) сюда же относятся простокваша, мясной студень (пищевое блюдо) и т. д. Замечательно, что студни совмещают в себе свойства твердых и жидких тел. Как твердые тела они проявляют ряд механических свойств (твер дость, упругость и др.). В то же время по своей электропроводности студни практически не отличаются от жидких электролитов. Химические реакции и процессы кристаллизации в студнях протекают в уело виях, резко отличных от твердых сред и весьма близких к жидким В связи с этим студни обозначают как квазитвердые тела. [c.276]

    Механическим смешением силиконовых эластомеров с другими материалами получают дисперсные системы, обладающие ценными физическими свойствами. Так, например, путем добавления 10% силиконового эластомера к бутилкаучуку в значительной степени снижается его твердость при неизменном пределе прочности при растяжении [1760]. Очень интересна по свойствам также силиконовая упругая замазка. Она является промежуточным продуктом между силиконовыми маслами и эластомерами, так как может течь как очень вязкая жидкость, но при внезапном сжатии или растяжении весьма эластична. Упругую замазку можно налить в сосуд, однако если приготовленный из нее шарик бросить на пол, он подпрыгивает на 80% начальной высоты. Чем быстрее прилагается сила, тем эластичнее упругая замазка и тем меньше остаточная деформация. При очень быстрых ударах молотом замазка обычно разбивается на куски. Ее предел прочности при растяжении равен нулю. [c.384]

    Явления аномальной вязкости в маслах обычно воз- В,г1см никают вблизи температуры помутнения, когда из масла начинают выделяться твердые парафиновые углеводороды. Кроме того, добавка даже небольшого количества парафина (до 1%) к маслу, до этого не обнаруживавшего явлений аномальной вязкости, сообщает этому маслу при достаточно низкой температуре все свойства коллоидной дисперсной системы — наличие структурной вязкости, тиксотропию, статическую упругость сдвига. [c.129]

    Очевидно, в нефтяной дисперсной системе на суспендированные частицы воздействуют факторы, влияющие на изменение их формы. В первую очередь к таким факторам относятся обратимая упругая деформация суспендированной частицы, а также вязкое сопротивление при течении. Таким образом, при описании вязкости нефтяных дисперсных систем особое внимание следует уделять двум аспектам — г ид-родинамическому и конфи1урационному. [c.87]

    Дисперсные системы с цепочечной структурой подобны полимерам в структурном отношении и, следовательно, В отношении природы упругости. В обоих случаях упругость может быть обусловлена распрямлением цепей (клубков) под действием растягивающей силы /. Эта сила соз. дает на каждом звене цепочки ориентирующий момент силы /ГцЗша, аналогичный моменту силы р,о[г 5ша, действующей на магнитный диполь в поле Е, где а—угол [c.213]

    VII.17.21. В приборе дисперсная система подвергается периодической деформации по синусоидальному закону с заданной амплитудой Va ч частотой ш. Возникающие при эгом пттряжения т измеряются и также оказываются синусоидальными с амплитудой и сдвигом по фазе 9, т. е. T = Xa(sin(i)i-i-0) при Y = VaSIn i)i. Опрсдсличь, кзкие свой-ства —вязкоупругого твердого тела или вязкоупругой жидкости — преобладают, и вычислить вязкость т] и модуль упругости G. [c.241]

    Поляризация обусловлена обратимым смещением заряженных частичек под влиянием электрического поля. В дисперсных системах всег-да существует межфазный скачок потенщГала, причем заряд поверхности дисиерсЯий фазы находится в равновесии с противоположным но знаку нарядом дисперсионной среды, под влиянием электрическо-го поля двойной слой может обратимо (упруго) смещаться и тем самым увеличивать поляризацию, а значит, и диэлектрическую постоянную системы. [c.107]

    Классическая механика однофазных (атомных) сред выделяет следующие важнейшие свойства физических беспоровых тел упругость, вязкость, пластичность, прочность, ползучесть, релаксацию и др. Эти свойства называются механическими. Все дисперсные системы в разной степени обладают указанными выше механическими свойствами однофазных тел. [c.128]

    ГЕЛИ (от лат. зе1о - застываю), 1) в коллоидной химии Г.-дисперсные системы с жидкой дисперсионной средой, в к-рых частицы дисперсной фазы образуют пространств, структурную сетку. Представляют собой твердообразные ( студенистые ) тела, способные сохранять форму, обладающие упругостью (эластичностью) и пластичностью. Типичные Г. имеют коагуляционную структуру, т.е. частицы дисперсной фазы соединены в местах контакта силами межмол. взаимодействия непосредственно или через тонкую прослойку дисперсионной среды. Для них характерна тиксотропия, т.е. способность в изотермич. условиях самопроизвольно восстанавливать свою структуру после мех. разрушения. Такие Г. образуются, напр., при коагуляции золей (к о а гели), понижении т-ры или концентрировании мицеллярных р-ров мыл, выделении новой дисперсной фазы из пересыщ. р-ров (л и о гели). Г. могут возникать в виде рыхлых осадков либо образуют структурную сетку во всем объеме первоначально жидкой системы без нарушения ее макрооднородности. Г. с водной дисперсионной средой наз. гидрогелями, с углеводородной - о р г а н о-гелями. [c.513]

    Для наполненных эластомеров проявляются реологич. эффекты, обусловленные внутр. структурой наполнителя. Так же, как и для текучих сред, в резинах наблюдаются тиксотропные явления, состоящие в том, что при повторных нагружениях деформац. кривые меняются и постепенно восстанавливаются исходные св-ва материала при отдыхе (эффект Маллинза). При периодич. деформациях нелинейность мех. поведения (зависимость модуля упругости от амплитуды деформации) возникает при крайне малых деформациях подобно тому, как это имеет место, напр., в дисперсных системах с низкомол. дисперсионной средой. Так же, как и для р-ров линейных полимеров, высокоскоростное деформирование резины может приводить к мех. стеклованию, а растяжение до высоких значений способствует кристаллизации. [c.248]

    Совр. Ф.-х. м. развивается на основе представлений об определяющей роли физико-хим. явлений на границе раздела фаз - смачивания, адсорбции, адгезии и др.- во всех процессах, обусловленных взаимод. между частицами дисперсной фазы, в т. ч. структурообразования (см. Структурообразова-ние в дисперсных системах). Коагуляционные структуры, в к-рых взаимод. частиц ограничивается их соприкосновением через прослойку дисперсионной среды, определяют вязкость, пластичность, тиксотропное поведение жидких дисперсных систем, а также зависимость сопротивления сдвигу от скорости течения. Структуры с фазовыми контактами образуются в кристаллич. и аморфных твердых телах и дисперсных материалах при спекании, прессовании, изотермич. перегонке, а также при вьщелении новой высокодисперсной фазы в пересыщенных р-рах и расплавах, напр, в минер, связующих или полимерных материалах. Мех. характеристики таких тел - прочность, долговечность, износостойкость, упру-го-пластич. св-ва и упруго-хрупкое разрушение - обусловлены силами сцепления в контактах, числом контактов (на 1 см пов-сти раздела фаз), типом контактов, дисперсностью системы и могут изменяться в широких пределах. Так, для глобулярной пористой монодисперсной структуры прочность материала может варьировать от 10 до 10 Н/м . Возможно образование иерархич. уровней дисперсной структуры первичные частицы - их агрегаты - флокулы - структурированный осадок. Сплошные материалы, в частности металлы и сплавы, в рамках представлений Ф.-х. м. рассматриваются как предельный случай полного срастания зерен структуры с ( овыми контактами. [c.90]

    Известно, что если в дисперсной системе распределение максимумов свободной энергии имеет регулярный характер, то монодисперсные коллоидные част1щы, находящиеся в минимумах и разделенные барьером отталкивания, могут образовывать периодические коллоидные структуры. Возможность сближения частиц в элементарных актах определяется высотой энергетических барьеров и глубиной потенциальных ям. Если глубина второго минимума (в данном случае со стороны большего давления, рис. 12.45) достаточно велика, то независимо от высоты барьера происходит дальнее взаимодействие (до 100 нм) двух частиц, фиксируемых на расстоянии, отвечающем второму минимуму. К этой паре могут присоединяться дру1 ие частицы с образованием тройников и более сложных ансамблей. При возрастании концентрации дисперсной фазы, например при увеличении глубины окисления битума, в таких случаях возможно превращение золя в полностью структурированную систему. Периодические коллоидные системы, являющиеся тиксотропными гелеобразными веществами, в зависимости от предложенной нагрузки способны вести себя либо как упругие тела, либо как легко текучие жидкости. Судя по данным, приведенным на рис. 12.43 и 12.44, таким свойством обладают пленки смол, асфальтенов и битумов разной степени окисления. [c.793]

    Наиболее важной задачей является выяснение механизма и количественных закономерностей конденсационных процессов образования дисперсных систем в связи с кинетикой образования новых фаз и особенно твердых тел, развитие теории диопергирования твердых тел различного рода на основе современных представлений о механизме их деформации и разрушения, разработка общей теории структурообразования, возникновения и развития коагуляционных, конденсационных и кристаллизационных пространственных структур в дисперсных системах. Исследования в этой области должны привести к установлению связи особенностей таких структур, кинетики их дальнейшего развития и старения при различных условиях с их механическими свойствами (прочностью, упругостью, пластичностью, вязкостью). Большое научное значение этих задач неразрывно связано с различными важнейшими народно-хозяйствен- [c.334]

    Заметное изменение в упругости пара можно наблюдать лишь у очень малых капель. Так, у капель воды радиуса см разница почти незаметна. Упругость пара увеличивается на 10% при радиусе капли в 10 см при г = 10 см упругость возрастет в два раза по сравцению с упругостью яад плоской поверхностью. Отсюда видно, что при коллоидной степени дисперсности (10 —10 ) упругость насыщенного пара жидкости значительно больше, что должно иметь значение для аэрозолей типа туманов. В них, благодаря изотермической перегонке, должно происходить изменение дисперсности системы в сто,-рону ее уменьшения. [c.116]


Смотреть страницы где упоминается термин Дисперсные системы упругие: [c.435]    [c.25]    [c.190]    [c.133]    [c.69]    [c.64]    [c.309]    [c.334]    [c.366]    [c.304]    [c.334]    [c.706]    [c.166]    [c.118]    [c.55]    [c.295]    [c.292]    [c.17]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы



© 2025 chem21.info Реклама на сайте