Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа упругости полимеров

    Природа упругой силы, возникающей при деформировании полимеров, находящихся в стеклообразном и высокоэластическом состояниях, рассмотрена в разд. 2.2.1. В первом случае она связана с изменением внутренней энергии, во втором - энтропии. Молекулярный механизм энтропийной упругости, связанный с восстановлением наиболее вероятных размеров макромолекулярных клубков, детально рассмотрен в разд. 2.2. [c.149]


    Кинетическая прИрода упругости газа обусловлена подвижностью его молекул. Гигантские молекулы полимера ПрИ обычных температурах мало подвижны, и поэтому высоко-эластическая деформация не может определяться подвижностью всей цепи. Она обусловлена тепловым движением звеньев цепи, вследствие которого длинные цепи изгибаются. [c.163]

    Природа упругости полимеров [c.72]

    Мы рассмотрели одно из важнейших в физике полимеров приложений термодинамики к полимерам в высокоэластическом состоянии. Термодинамические соотношения применимы к равновесной деформации сшитых эластомеров (гибкоцепных полимерных сеток). Из сравнения термодинамических соотношений с экспериментальными данными следует, что природа упругости полимерных сеток выше температуры стеклования энтропийная, а модули упругости имеют малые значения. При этом деформации сшитого эластомера характеризуются большими значениями (сотни процентов). Таким образом, отличие упругости полимеров в высокоэластическом состоянии от упругости твердых тел существенно. Энтропийная природа упругости полимеров приводит в высокоэластическом состоянии к. тепловым эффектам при деформациях, противоположным тем>. которые наблюдаются у обычных твердых тел. [c.153]

    Выражение для модуля упругости, его прямая пропорциональность абсолютной температуре, указывает на энтропийную природу упругости полимера, на ее близкое родство с таким явлением, как давление идеального газа. [c.86]

    Приведенные данные свидетельствуют, что модуль высоко-эластичности полимеров меньше модуля упругости твердых тел на 6 порядков. Это различие связано с тем, что природа упругости имеет энерг етический характер, а эластичности — энтропийный (см. раздел XIV.3). [c.327]

    Природа упругости жидкостей может быть различной. Так, для концентрированных связнодисперсных систем с большой поверхностью контактов между частицами упругость объясняется наличием твердообразных свойств, прочностью структуры. Упругие свойства растворов полимеров обусловлены в первую очередь эластичностью макромолекулярных клубков. [c.49]

    В связи с тем, что в последние годы в полимерной науке также все в большей мере проявляется тенденция к изучению проблем, связанных с индивидуальностью макромолекул, можно ли с уверенностью утверждать, какой из подходов, использованных этими двумя крупнейшими учеными, является более перспективным. Во всяком случае, благодаря развитию теории эффекта исключенного объема в настоящее время появилась возможность связать конфор-мационные характеристики макромолекулы как целого, которые определяются на основании исследования различных молекулярных свойств полимеров в растворе, с химической природой цепи. Каучукоподобная упругость также является общим специфическим свойством полимерных веществ, однако, если теория упругости каучука вначале строилась на основе общих абстрактных представлений об энтропийной природе упругости, то в настоящее время оказалось необходимым учитывать вклад конформационной энергии цепи, который имеет вполне определенное значение для полимерных молекул различного строения. [c.153]


    Взаимодействие смазки с полимером менее эффективно, чем с металлом. Природа Т. полимеров в присутствии жидкой смазки мало изучена. Наиболее вероятны след, механизмы смазочного действия формирование двойного электрич. слоя толщиной порядка 100 A, к-рый ослабляет межмолекулярное взаимодействие при соприкосновении (для полимеров с низким модулем упругости) растворение поверхностного слоя полимера смазкой. Хорошими смазочными материалами служат амиды олеиновой и стеариновой к-т для полиэтилена, вода — для поликапролактама и фторопластов, мыла — для резин. [c.326]

    Одной из основных характеристик полимеров, включая полиолефины, является молекулярная масса, которая определяет их высокую вязкость и характерные вязко-упругие механические свойства. Встречающиеся в природе натуральные полимеры, например ДНК и белки, также имеют высокую молекулярную массу, но их строение весьма специфично. Для макромолекул полиолефинов, таких как полиэтилен и полипропилен, характерен весьма широкий диапазон значений молекулярных масс. Необходимо учитывать не только молекулярную массу, но и молекулярно-массовое распределение. [c.45]

    Поэтому при первых попытках определения физики полимеров ей было выделено собственное место в физической механике твердых тел. Это, однако, неверно в принципе (сегодня это кажется очевидным), ибо каучукоподобное состояние, строго говоря, аналогично жидкому, с той только разницей, что изменения размеров и формы полностью обратимы. Впрочем, при всестороннем сжатии каучуки и резины ведут себя как обычные твердые тела. Отнесение физики полимеров к определенной категории агрегатного состояния еще больше запуталось, когда первые теории каучукоподобной эластичности (см. гл. П1 и IV) выявили энтропийную природу этой эластичности, аналогичную упругости газов. [c.9]

    Исследование характера деформации твердого тела позволяет получить обширную информацию о его структуре и природе упругости. Основной особенностью полимеров является их уникальная способность к большим обратимым деформациям [106, 107], являющаяся прямым следствием цепного строения макромолекул, [c.36]

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]

    Следует отметить, что способность к большим обратимым деформациям проявляется только в том случае, если деформируемый полимер находится выше температуры стеклования, в высокоэластическом состоянии, в котором возникают условия для сегментальной подвижности макромолекул, обусловливаю- щей природу самой упругости полимеров. Единственным известным в настоящее время механизмом больших обратимых деформаций твердого тела является энтропийный механизм эластичности каучука. [c.38]

    Хорошо известно, что сшитые эластомеры характеризуются упругостью энтропийной природы (высокой эластичностью) [25, 26]. Объемная упругость газов также имеет энтропийную природу. Отсюда возникло представление о газовой природе упругости эластомеров и соответственно о газовой модели строения этих материалов. Одной из первых экспериментально обоснованных структурных моделей линейных полимеров вообще и эластомеров в частности была модель хаотически переплетенных цепей, которая сохранила определенное значение и до настоящего времени [27—30]. [c.24]

    Как было показано в работе [50], модуль упругости полимера может быть легко изменен введением наполнителей. Исследования влияния наполнителей резин на их фрикционные свойства свидетельствуют о тесной связи между механическими свойствами полимеров и коэффициентом трения. Природа каучука определяет адгезионную связь, а количество наполнителя — жесткость резины. [c.134]

    Едва ли не единственным предсказанием существенно качественной модели ММП, поддающимся количественной проверке, является представление о полном разворачивании макромолекул в составе ММП, в результате которого расстояние между концами отдельных цепочек должно быть сопоставимым с их контурной длиной. Это предсказание, однако, встречается с почти непреодолимыми трудностями при количественном анализе всей совокупности физических свойств полимеров в аморфном состоянии. Наглядным примером такой ситуации служит доказательство энтропийной природы упругости каучуков в рамках молекулярной модели, основанной на представлении об аддитивности вкладов отдельных активных макромолекул, сохраняющих свою конформационную индивидуальность, в общую упругую силу сетки. Более того, учет вклада внутримолекулярной (конформационной) энергии цепей в упругую силу каучука позволил установить совпадание температурных коэффициентов размеров макромолекул в сетчатом каучукоподобном полимере и в идеальном растворителе не только по знаку, но и по абсолютной величине. Эти результаты подтверждают высказанную более 25 лет назад гипотезу Флори об идентичности конформаций полимерных молекул в идеальных растворителях и в блочном аморфном состоянии. [c.30]


    Здесь уместно заметить, что вследствие уже упоминавшейся полной неопределенности количественных предсказаний модели ММП некоторые авторы без достаточных оснований считали возможным трактовать перечисленные выше экспериментальные доказательства наличия ближнего порядка в аморфных полимерах с позиций пачечной модели, несмотря на то что размеры областей ближнего порядка оказались намного меньшими предполагаемых [2, 4, 5] размеров ММП. Еще большие трудности возникают в случае применения модели ММП, предполагающей полное разворачивание макромолекул и потерю ими своей индивидуальности в составе пачек, для количественного описания всей совокупности физических свойств полимеров в аморфном состоянии. Наглядным примером этому служит доказательство энтропийной природы упругости каучуков в рамках молекулярной модели, основанной на представлении об аддитивности вкладов отдельных активных макромолекул, сохраняющих свою индивидуальность, в общую упругую силу сетки [46—49]. Более того, учет вклада внутримолекулярной ( конформацион-ной ) энергии цепей в упругую силу каучука [50—52] позволил установить совпадение температурных коэффициентов размеров макромолекул в сетчатом каучукоподобном полимере и в идеальном растворителе не только по знаку, но и по абсолютной величине [51—56]. Эти результаты подтверждают высказанную еще 25 лет назад гипотезу П. Флори [57] об идентичности конформаций полимерных молекул в идеальных растворителях и в блочном аморфном состоянии. Как известно [57, 58, в идеальных растворителях взаимодействие сегментов макромолекулы с молекулами растворителя энергетически менее выгодно, чем с другими сегментами этой же макромолекулы. По этой причине в разбавленном идеальном растворе силы притяжения между сегментами одной и той же макромолекулы полностью компенсируют эффект физически исключенного объема, благодаря чему полимерная цепочка приобретает компактную невозмущенную конформацию. По мнению П. Флори [57], в блочном аморфном состоянии, в котором сегменты данной макромолекулы окружены энергетически неразличимыми сегментами соседних цепей, объемные эффекты также должны исчезать, поскольку нет оснований считать, что какая-либо конформация макромолекулы, отличная от невозмущенной, окажется энергетически более выгодной. [c.6]

    Причины возникновения обратного хода деформации были рассмотрены ранее. Это прежде всего проявления энтропийной природы эластичности полимеров, процессы размораживания замороженной упругости (точнее высокоэластичности), явления газообразования, приводящие к вспучиванию материала. Первая из указанных причин характерна для хорошо сшитых эластомеров с протяженной температурной областью высокоэластичности. Величина вспучивания здесь сравнительно невелика, и нарастает [c.212]

    Основной компонент полимерного связующего - смола. От ее природы, реакционной способности, молекулярной массы и строения молекул зависят температура размягчения, растворимость, вязкость и конечные свойства связующего. Кроме смолы, в состав связующего могут входить катализаторы или инициаторы, которые вводят в смолы в небольших количествах и способствуют их отверждению пластификаторы, придающие полимеру запас пластичности и упругости красители, которые окрашивают материал в нужный цвет стабилизаторы, предотвращающие распад полимеров под действием светового излучения и повышенных температур. [c.74]

    В главе I этой книги уже было рассказано об энтропийной природе упругости полимеров в каучукоподобном состоянии. Реальный полимер представляет собой сложную сетку переплетенных цепей для проявления высокоэластичности без течения необходимо наличие поперечных связей между цепями. Прежде чем исследовать особенности поведения такой сетки, следует рассмотреть растяжение изолированных цепей. Первые работы Куна, Марка и других ученых, посвященные молекулярной теории упругости каучука, целиком основывались на таком рассмотрении и не учитывали явлений, возникающих вследствие объединения цепей в единую сетку. Для построения подлинной теории упругости каучука, связывающей физико-механические свойства материала с химическим строением его молекул, необходимо изучить наряду со свойствами отдельных цепей их поведение в сетке. Однако изучая растяжение изолированных цепей, мы приходим к пониманию и основных особенностей растяжения сетки. Как указывал П. П. Кобеко [ ], равновесные механические свойства каучука и других эластомеров в первую очередь определяются внутримолекулярными свойствами цепей полимера и структурой сетки, образованной из этих цепей. Однако межмолекуляриое взаимодействие ответственно не только за временной и температурный интервалы, в которых проявляется высокоэластичность, но и за струвтуру сетки и гибкость цепей. [c.364]

    Дисперсные системы с цепочечной структурой подобны полимерам в структурном отношении и, следовательно, В отношении природы упругости. В обоих случаях упругость может быть обусловлена распрямлением цепей (клубков) под действием растягивающей силы /. Эта сила соз. дает на каждом звене цепочки ориентирующий момент силы /ГцЗша, аналогичный моменту силы р,о[г 5ша, действующей на магнитный диполь в поле Е, где а—угол [c.213]

    В соответствии с природой перехода полимера из высокоэла-стического деформационного состояния в упругое можно сформулировать следующие основные особенности механического стеклования  [c.98]

    Резины, как и жидкости, подчиняются закону Паскаля. Природа высокоэластической деформации полимеров отличается от природы деформации твердых тел, но аналогична молекулярно-кине-тической (энтропийной) природе упругости газов. Например, равновесное напряжение в деформированной резине, как и давление сжатого газа, при заданном объеме пропорционально абсолютной [c.33]

    Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы 0 (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетическая и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Гс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стеклованием. При охлаждении расплава полимера вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Гс и механического стеклования Гм независимы между собой, так как первая зависит от скорости охлаждения, а вторая —от времени действия силы 0 или частоты упругих колебаний V. [c.43]

    В отличие от твердых кристаллич. тел деформация полимеров в B. . связана не с изменением ме цатомных или межмол. расстояний, а с частичным развертыванием хаотически свернутых цепных молекул, что и обусловливает возможность больших деформаций. При этом возвращающая сила / вызывается не силами притяжения между молекулами деформируемого тела, а тепловым движением, к-рое по своей интенсивности такое же, как тепловое движение молекул в жидкостях. Т. обр. упругость полимеров в B. . имеет энтропийную природу подобно объемной упругости газов. Поэтому модуль упругости полимеров в В. с. пропорционален абс. т-ре Т и имеет низкие значения (0,1-10 МПа), тогда как модуль всестороннего сжатия, определяемый силами межмол. взаимодействия, типичен для конденсиров. сред (10 МПа). Вследствие этого деформация эластомеров практически не сопровождается изменением объема, и связанное с этим изменение внутр. энергии и ничтожно. Наблюдаемые на опыте изменения U при деформации эластомеров связаны с изменением набора энергетически неравноценных конформац. изомеров (см. Конформационный анализ) при развертывании цепей. В зависимости от разности энергетич. уровней транс- и гош-кон-формеров изменение внутр. энергии при деформации AU и соответствующая ему составляющая возвращающей силы fg = dVjd[)vr ( энергетич. сила ) м. б. как положительными, так и отрицательными (/-длина образца, V-ero объем). Ниже приведены значения fjf для нек-рых полимеров  [c.443]

    Независимость. энергии активации разрыва от напряжения может быть объяснена, следовательно, молекулярнокинетической природой упругости высокоэластических. материалов. Этот факт сближает процесс разрушения каучукоподобных полимеров с процессом их вязкого течения, так как энергии активации обоих процессов не только не зависят от напряжения, но в отдельных случаях совпадают по величине (энергия активации вязкого течения каучука СКС-30 равна 13 ккал/моль). Это свидетельствует о тесной связи процессов разрушения и вязкого течения каучукоподобных материалов и позволяет обосновать возможность применения к ним метода обобщенных координат Ферри (см. гл. II, 6). Эта связь следует также из механизма медленного разрыва резин, рассмотренного в гл. III. Образование тяжей в напряжен-нол высокоэластическом материале связано с преодсление.м межмолекулярных взаимодействий в результате скольжения отдельных участков при микрорасслоении материала. Процесс микрорасслоения, вероятно, того же рода, что и вязкое течение полимеров. [c.184]

    Таким образом, авторы [123] предполагают, что высокие значения модуля полимеров. в коротковременной части переходной зоны связаны с энергетической природой упругости. Это предположение вполне естественно и, вероятно, в ближайшее время явится объектом пристального внимания со стороны экспериментаторов. К сожалению, в этих работах нет указаний на то, где и в какой степени начинает проявляться энтропийная природа упругости. Кроме того, вытекающий из этой теории спектр времен релаксации во всей области перехода имеет форму клина с наклоном —1/2. Однако из опыта известно, что форма спектра времен релаксации в области малых времен для различных полимеров может сильно отличаться от прямолинейной в зависимости от их химического строения. [c.25]

    Лидерманом [610] и другрши авторами [611, 612] рассмотрены закономерности линейного упруго-вязкого поведения полиизобутилена. Обсуждены вопросы течения полимеров и природа упругости высокомолекулярных веществ. Приведены формулы для вычисления модуля и определения реологических свойств полимеров на ротационном вязкоэластомере. [c.200]

    Структурное С. п., рассмотренное выше, не связано с механич. воздействиями. При известных условиях (достаточно быстрые воздействия) высокоэластический полимер, а также низкомолекулярная жидкость ведут себя, как твердые упругие тела. Для низкомолекулярных жидкостей на практике трудно реализовать переход в упругое состояние, т. к. время релаксации т При темп-рах выше темп-ры плавления чрезвычайно мало (напр., для воды 10 i—10 i сек). Однако в полимерах кинетич. единицами являются сегменты цепных макромолекул, мол. масса к-рых почти на два порядка больше, чем мол. масса пизкомолекулярных жидкостей, что вместе с особенностями строения полимеров обусловливает значительно большие величины времен релаксации. Поэтому в полимерах переход из высокоэластич. состояния в упругое практически легко реализуется и аморфные полимеры с уменьшением времени действия силы 6 из вязкого состояния переходят в высокоэластическое, а затем — в стеклообразное. То же самое происходит и при понижении темп-ры, если 0 = onst. Из стеклообразного состояния полимер можно вновь перевести в высокоэластич. либо увеличением периода действия силы (уменьшением частоты), либо уменьшением времени релаксации, что достигается повышением темп-ры при 0 = onst. Таким образом, природа перехода полимера из высокоэластического в стеклообразное состояние при уменьшении времени действия силы, как и в случае структурного стеклования, — молекулярно-кинетическая. Однако такой переход в стеклообразное состояние не связан с замораживанием структуры и происходит всегда выше Тg. Темп-ры структурного стеклования Тg и механич. стеклования не зависят друг от друга, т. к. первая онределяется скоростью охлаждения, а вторая — временным режимом механич. воздействия (временем 0, частотой колебаний со). [c.520]

    Морфология сшитых полимеров зависит от ряда факторов, таких как степень поперечного сшивания, структура полимера, подвергавшегося сшиванию (кристалл, аморфное твердое тело, жидкость), последующая термическая и механическая обработка образца. Теория каучукоподобной эластичности базируется на предположении, что любое взаимодействие между соседними цепями незначительно влияет на статистическую природу упругих свойств полимеров. Однако, как отметил Джи некоторые расхождения между теорией и экспериментом, вероятно, связаны именно со взаимодействием упорядоченно расположенных молекул. Если бы это объяснение оказалось правильным, можно было бы предположить, что полимеры, которые сшиваются в аморфном твердом или жидком состоянии, сохраняют до некоторой степени пачечную структуру. При сшивании твердых полимеров в кристаллическом состоянии образуются (как свидетельствуют последние результаты Сэлови и Келлера ) первичные связи между складками молекул в полимерных кристаллах. Показано что молекулярная ориентация в сшитых кристаллизующихся полимерах при температурах выше точки плавления несшитого полимера возможна лишь при небольших степенях сшивания. [c.22]

    Первый шаг на этом пути был сделан П. П. Кобеко, Е. В. Кувшин-ским и Г. И. Гуревичем [4], изучавшими температурные зависимости модуля упругости резины и эбонита. Было показано, что этот модуль в упругой области меняется сравнительно мало, но в области перехода от упругой деформации к высокоэластической наблюдается резкое уменьшение модуля упругости. Такое поведение полимерных тел при повышении температуры авторы объяснили тем, что время релаксации в переходной области соизмеримо со временем наблюдения, а сам при-Ц0СС деформации является неустановившимся. Здесь необходимо отметить, что в то время, как термодинамика явления высокой эластичности полимеров и молекулярная природа равновесной высокоэластической деформации благодаря работам Марка, Куна и других зарубежных ученых ко времени выхода цитируемой работы получили теоретическое обоснование и могли считаться, в основных чертах, выясненными, оставались совершенно не изученными кинетика высокой эластичности и природа затвердевания полимеров. Таким образом, работа П. П. Кобеко, Е. В. Кувшинского и Г. И. Гуревича [4] может считаться первым важным исследованием в этом направлении. [c.317]

    Учение о равновесных механических свойствах высокополимеров основано главным образом на опыте изучения резин — типичных эластомеров, образованных слабосшитыми линейными или мало разветвленными высокополимерами. Основной теоретической концепцией, которой последние годы руководствовались при изучении природы упругости высокомолекулярных соединений этого класса, является статистическая теория молекулярных сеток. При помощи этой теории удалось достаточно полно раскрыть и интерпретировать природу упругости типичных эластомеров — резин и увязать между собой целый ряд эмпирических соотношений, касающихся упругости резин, соподчинен-ность которых была далеко не ясна. Она привела к более углубленной постановке экспериментальных исследований. Ее развитие натолкнуло на ряд новых физических проблем, таких, как гибкость молекулярных цепей, микроброуновское движение полимолекул, строение сшитых полимеров и т. п. [c.4]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    Мел<сферолитные границы подобны границам между зернами. Эти приграничные области обогащены низкомолекулярными фракциями, примесями, концами цепей и дефектами. Деформируемость и прочность такой состааной структуры естественно зависит от податливости всех ее компонент. При таком составе податливость (низкие значения упругих постоянных) следует приписать сцеплению границ зерен и свернутых поверхностей ламелл. Сцепление между цепями в ламелле кристалла значительно сильнее межкристаллического взаимодействия. Это обусловливает определенную стабильность ламеллярных элементов при деформировании образца. Поэтому деформативность такого неориентированного частично кристаллического полимера будет сильнее зависеть от природы вторичных силовых связей между структурными элементами, чем от длины и прочности цепных молекул. [c.31]

    В процессе развития науки о дисперсных системах отдельные ее разделы выделились в самостоятельные научные дисциплины теория броуновского движения, послужившая основой молекулярной и современной статистической физики развитие более общих представлеЕщй о природе растворов, которые включают в себя как частный случай у чение об истинных растворах низкомолекулярных веществ физико-химия полимеров и их растворов и, наконец, реология — наука о деформационных свойствах материалов, обобщающая учение о деформации (течении) жидкостей, упругих материалов (физико-химическая механика) и промежуточных по свойствам материалов, к числу которых относятся многие дисперсные системы. [c.6]

    Природа высокой эластичности обусловлена гибкостью полимерных цепей, которая отчетливо проявляется, когда тепловое движение достаточно интенсивно, а межмолекулярные взаимодействия слабы [14, с. 54]. Ничтожно малая по величине упругая деформация полимера связана с изменением средних расстояний между атомами и деформацией валентных углов полимерной цепи, а Бысокоэластическая — с ориентацией и перемещением звеньев гибких цепей без изменения среднего расстояния между цепями. [c.106]


Смотреть страницы где упоминается термин Природа упругости полимеров: [c.83]    [c.71]    [c.731]    [c.326]    [c.31]    [c.28]    [c.20]   
Смотреть главы в:

Высокомолекулярные соединения -> Природа упругости полимеров




ПОИСК





Смотрите так же термины и статьи:

Полимеры природа



© 2025 chem21.info Реклама на сайте