Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород синтез

    Еще пример. Известно, что при взаимодействии серной кислоты и гидросульфида натрия образуется сероводород, являющийся сильнодействующим ядом. На одном заводе органического синтеза в насосном отделении склада жидких продуктов при подаче гидросульфида натрия из складской емкости в цех выбило прокладку во фланцевом соединении трубопровода, расположенного над поддоном с насосами, перекачивающими серную кислоту. При взаимодействии серной кислоты, оставшейся в поддоне, с гидросульфидом натрия произошло значительное выделение сероводорода. Обслуживающий персонал при выполнении операций по останову насосов получил отравления сероводородом. [c.85]


    Озонирование сточных вод. Метод озонирования позволяет уничтожать в сточных водах цианистые соединения, фенолы, поверхностно-активные вещества, в том числе и алкилбензолсульфонаты, роданиды, нефтепродукты и сопутствующие им меркаптаны, сероводород и различные продукты основного органического синтеза. Сточные воды, прошедшие очистку при помощи озона, прозрачны, бесцветны, не имеют запаха и привкуса. Сбрасываемые воды ряда нефтехимических производств невозможно обезвредить обычными методами химической и биохимической очистки, и только озон позволяет разрушить сложные, не поддающиеся биологическому распаду вещества. [c.343]

    Требования к степепи очистки от сероводорода зависят от назначения газа. При очистке газов, выбрасываемых в атмосферу содержание сероводорода должно соответствовать ПДК-При очистке технологического газа содержание сероводорода регламентируется требованиями процессов дальнейшей переработки. В частости, для химических синтезов содержание сероводорода в технологическом газе может находиться в пределах от 1 до 50 мг/м". Сероводород, выделяемый при очистке, перерабатывают в элементарную серу или серную кислоту. [c.51]

    Гомогенные процессы основаны на реакциях между реагентами, находящимися в одной фазе, и не имеют поверхности раздела отдельных частиц системы друг от друга. В промышленных печах гомогенные процессы осуществляются в основном в газовой фазе. К ним относятся окислительные экзотермические реакции горения различных газов, протекающие в пламенах (например, окисление метана, сероводорода, оксида углерода, водорода, синтез хлористого водорода и т. д.). Условно к гомогенным процессам можно отнести окисление паров серы, фосфора, жидких топлив, потому что непосредственно химическая реакция протекает между паровой фазой окисляемого реагента и газовой средой окислителя, которые совместно образуют горючую газовую фазу. На эти реакции могут быть распространены закономерности гомогенных процессов. [c.23]

    Аустенитно-ферритные стали обладают повышенным сопротивлением всем видам коррозии. Сопротивляемость коррозии в морской воде и в условиях воздействия сероводорода послужила основанием для применения этих сталей при изготовлении конструкций морских платформ для добычи нефти и газа, магистральных и технологических тр убопроводов. Они имею повышенную стойкость против межкри-сталгшгной корро.зии хорошо работают в агрессивных средах фосфорной, муравьиной, молочной, уксусной и других кислотах, а также в условиях синтеза мочевины. [c.258]


    Весьма благоприятным является то обстоятельство, что в реакторе наряду с конверсией окиси углерода имеет место восстановление сероорганических соединений (сероуглерода, тиофенов и др.) до сероводорода, что значительно упрощает очистку синтез-газа от серы. [c.12]

    Основными компонентами природного газа являются метан, сероводород, диоксид углерода. Данные о некоторых реакциях СО2, получении водорода и синтез-газа из СН4, взаимодействии метана с насыщенными (диспропорционирование) и ненасыщенными (крекинг) углеводородами приведены выше. Ниже рассмотрены термодинамические характеристики процесса утилизации сероводорода — процесса Клауса и синтезов на основе метана. [c.349]

    Химическая коррозия вызывается непосредственным действием на металл агрессивной среды. Чаще всего такой средой являются сухие газы, действующие на металл при высоких температурах (например, в двигателях внутреннего сгорания, в аппаратуре синтеза аммиака и др.). При температуре выше 350 °С сероводород вступает в непосредственное химическое соединение с железом, вследствие чего образуется сернистое железо  [c.171]

    Синтез меркаптанов из олефинов и сероводорода. Реакция олефииов с сероводородом сходна с процессом прямой гидратации олефииов и также япляется обратимой  [c.271]

    На базе нефти выросли, кроме того, такие мощные неорганические производства, как получение серы и серной кислоты из сероводорода, синтез аммиака. [c.189]

    По газопроводу длиной свыше 3000 м транспортируется сжиженная пропан-пропиленовая фракция, которая на заводе синтеза спирта подвергается очистке раствором моноэтаноламина от двуокиси углерода и сероводорода. [c.282]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    При обессеривании кокса с содержанием серы 4% и работе без подачи нефтяных газов состав газов кальцинации в среднем (в мае. %) следующий водорода 21, метана 35, сероводорода 21, сероуглерода 1,5, сернистого газа 5, меркаптанов 6,5, окиси и двуокиси углерода в сумме 10. Газ с таким высоким содержанием водорода (около 70 объем. %) является ценным сырьем для процессов синтеза и гидрирования. [c.163]

    К первой группе относятся сточные воды нефтеперерабатывающих и нефтехимических заводов, предприятий органического синтеза и синтетического каучука, коксохимических, газослан-цевых и др. Они содержат нефть и нефтепродукты, нафтеновые кислоты, углеводороды, спирты, альдегиды, кетоны, поверхностно-активные вещества, фенолы, смолы, аммиак, меркаптаны, сероводород и др. [c.74]

    По первому направлению газ, выходящий из реактора газификации, поступает в котел-утилизатор, в котором производится насыщенный пар давлением до 10 МПа. Охлажденный синтез-газ с отношением Н2/СО =1 1, очищается от сажи, золы, сероводорода и сероорганических соединений, после чего поступает на производство спиртов и водорода. Эта схема позволяет одновременно производить синтез-газ, водород и насыщенный пар. Оптимальное давление процесса - 6,0 МПа. Проводятся опыты и при более высоком давлении. [c.8]

    Большое внимание уделяется разработке методов синтетического, получения бензтиофена. Наиболее перспективным является синтез бензтиофена по реакции взаимодействия этилбензола с сероводородом [40]. [c.355]

    В патентной литературе имеется много сведений о методах синтеза органических сернистых соединений. Так, сульфиды и меркаптаны образуются в результате присоединения сероводорода к углеводородам с ненасыщенной связью [1]. Реакция протекает при температуре 50— 100° С и давлении до 70 ат в органических растворителях в присутствии продуктов взаимодействия алкиламина и полухлористой серы. Выход меркаптанов и сульфидов 30-50%. [c.51]

    При этих условиях сера органических сернистых соединений превращается в сероводород, который одновременно удаляется с катализатора. Новейший способ, очень хорошо зарекомендовавший себя на практике, одновременно позволяет очистить газ не только от сернистых соединений, но и от углекислоты, синильной кислоты, аммиака и смолистых загрязнений (ректизол-способ) оп заключается в промывке газа глубоко охлажденным метиловым спиртом, растворяющим все перечисленные загрязнения [21]. Способ работы примерно следующий (рпс. 10). Сырой газ при рабочем давлении синтеза, равном примерно 20 ат, подается в нижнюю часть промывной колонны 1, имеющую температуру —20°, где промываетс [ метиловым спиртом, поступающим в среднюю часть промывной башии с температурой порядка —75°. Стекая вппз по колонне, метиловый спирт нагревается от [c.28]


    ЗОг), при синтезе аммиака (конвертор Фаузера — Монтекатини— рис. 1Х-55, в котором вода под давлением 300 ат движется в замкнутом цикле и отдает теплоту воде, кипящей в котле), при каталитическом окислении аммиака до окиси азота (рис. 1Х-56), при сжигании сероводорода по методу Клауса и т. д. Такой способ приводит не только к рациональному использованию тепловой энергии, но в некоторых случаях и к наиболее выгодному для повышения выхода реакции распределению температур (синтез МНз, сгорание [c.402]

    Когда синтез-газ содержит такие соединения серы, как H S или OS, в концентрациях ниже 200 ч1млн, они обычно не оказывают влияния на активность катализатора. Однако катализатор может адсорбировать соединения серы и медленно их отдавать. Этот эффект важен, если катализатор высокотемпературной конверсии СО работает вместе с низкотемпературным катализатором. Например, при восстановлении первичного и вторичного катализатора риформинга часто образуется HjS и поэтому во время этой операции конвертор НТК обычно отключается. Если через конвертор ВТК проходит газ, содержащий серу, то она будет накапливаться там и после подключения конвертора НТК и большая часть сероводорода, несомненно, перейдет в него. Если содержание серы в газе на входе в конвертор ВТК превышает 200 ч1млн, то сера будет накапливаться по другому механизму (см. стр. 125). Накопление серы в катализаторе ВТК играет важную роль в отравлении катализатора НТК, и в связи с этим невыгодно допускать прохождение серы через конвертор ВТК. В высокотемпературном катализаторе обычно содержится небольшое количество сульфатов вследствие того, что при его изготовлении образуются некоторые нерастворимые сульфаты. [c.123]

    Применение моноэтанолампновой очистки позволяет одновременно освобождать синтез-газ от сероводорода и углекислоты. Сероводород, выделяемый при десорбции насыщенного раствора моноэтаноламина, может служить сырьем для производства серной кислоты. [c.18]

    В промышленном масштабе легко производятся сероводород и меркаптаны. Это — низкокипящие соединения, поэтому по окончании синтеза их можно легко отогнать из реакционной массы и возвратить в цикл. Однако они ядовиты и имеют чрезвычайно неприятный запах. Тиокислоты, особенно тиоуксусная и тиопропионовая, являются активными промоторами, но они имеют высокую температуру кипения и их трудно отделить от дифенилолпропана. В процессе разделения образующихся веществ эти кислоты обычно не регенерируются, что приводит к повышению себестоимости целевого продукта. Преимуществом их является значительно более слабый запах, чем у алкилмеркаптано  [c.67]

    Сначала из реакционной смеси отгоняют легкокипящие компоненты хлористый водород, промотор (если он легколетучий, например, сероводород, метил- или этилмеркаптан), ацетон и вoдy . Хлористый водород, вода и фенол образуют тройную азеотропную смесь (15,8% НС1, 64,8% Н2О и 19,4% СвН ОН т. кип. 107,33 °С при 760 мм рт. ст.), поэтому вместе с легколетучими компонентами отгоняется и часть фенола. Присутствие ацетона даже в небольших количествах приводит во время отгонки к образованию под действием кислотного катализатора окиси мезитила и ряда высококонденсированных и окрашенных примесей, ухудшающих качество дифенилолпропана, поэтому желательно проводить синтез до полного превращения ацетона, температуру отгонки поддерживать по возможности низкой, а время пребывания реакционной массы в аппарате — коротким. [c.127]

    Получение низших олефинов. Головными производствами нефтехимических комплексов и заводов являются установки получения низших олефинов, состоящие из отделений пиролиза углеводородного сырья, газоразделения, переработки жидких продуктов пиролиза. Исследования в области пиролиза и газоразделения ведутся Всесоюзным научно-исследовательским институтом органического синтеза (ВНИИОС), а в области переработки жидких продуктов пиролиза — ВНИИОС, Институтом горючих ископаемых, ВНИИОлефин, а также НИИ сланцев. Для проектирования процесса пиролиза выдаются следующие данные характеристика сырья и состав продуктов пиролиза, температура процесса, время пребывания сырья в зоне реакции (время контакта), расход водяного пара, парциальные давления углеводородов в зоне реакции. При разработке проекта отделения газоразделения используют рекомендации по очистке пирогаза от сероводорода, двуокиси углерода, ацетилена и диеновых углеводородов, осушке газа, последовательности выделения легких углеводородов. [c.43]

    В ИХП АН АзССР для осуществления непрерывных процессов получения присадки ИХП-21 создана новая конструкция пленочного реактора [а. с. СССР 404493], которая имеет ряд преимуществ перед роторной конструкцией. пленочного аппарата — прежде всего отсутствие вращающихся деталей и простота конструкции. С использованием этой конструкции пленочного реактора были разработаны непрерывные процессы фосфоросернения и сушки продукта конденсации и нейтрализованного продукта [59, с. 102 60, с. 57]. Для фосфоросернения реакционная смесь, состоящая из продукта конденсации, масла И-12 и сульфида фосфора (V) поступает в низ первой секции реактору и, достигнув расширенной части секции, спускается нисходящей пленкой, обеспечивающей эффективность протекания реакции и эвакуацию образующегося сероводорода. По такой же схеме осуществляется сушка промежуточных продуктов синтеза присадки. [c.250]

    Синтез тиогликолен часто осуществляют в среде продуктов реакции, барботируя через них оксид этилена и сероводород или меркаптан. Для интенсификации процесса добавляют щелочь в качестве катализатора, но при этом, во избежание побочной реакции присоединения а-оксида по гидроксильным группам, необходим збытoк сернистого соединения. [c.289]

    Принципиальная технологическая схема конверсии метана природного газа для производства азотоводородной смеси, применяемой в синтезе аммиака, показана на рис. 25. Природный газ под давлением около 4 МПа проходит подогреватель и подвергается очистке от серосодержащих соединений каталитическим гидрированием их в сероводород с последующей адсорбцией НзЗ. Очищенный газ смешивают с водяным паром в соотношении 3,7 1, подо- [c.76]

    Для подавления этой реакции синтез меркаптанов проводят при мольном соотношении сероводорода и олефина примерно равном 1,5 1. Радикальноцепное присоединение сероводорода к олефинам протекает в жидкой фазе при обычной или пониженной температуре и УФ-облучении. При этом сероводород присоединяется не по правилу Марковникова, что типично для свободнорадикальных процессов. Так, из пропилена с хорошим выходом образуется пропилмер-каптан и дипропилсульфид  [c.435]

    В схемах глубокой переработки нефти предусматривается использование тяжелых нефтяных остатков - гудронов и асфальтитов для получения Н2 и синтез-газа путем их газификации. Процесс газификации основан на неполном окислении углеводородного сырья кислородом, воздухом, обогащенным кислородом, в присутствии водяного пара или одним воздухом. Факельная газификация осуществляется в пустотелом реакторе. Основными продуктами являются окись углерода и водород, наряду с которыми образуются небольшие количества двуокиси углерода, иетана, сероводорода, выделяется также дисперсный углерод - сажа (от 0,1 мас.% для метана до 2-4 мас.%-тяжелых нефтяных остатков). Переработка тяжелых нефтяных остатков с температурой н.к. выше 500°С встречает затруднения, связанные с их высокой вязкостью, зольностью, температурой размягчения, коксуемостью, большим содержанием серы и металлов. [c.120]

    В отличие от никелевых катализаторов, применяемых при конверсии в од5шым паром, катализаторы на основе железа, используемые на первой стадии процесса получения водорода, не обладают такой же высокой восприимчивостью к дезактивирующему действию серы. Поэтому полученньА из кокса, загрязненного серой, синтез-газ может содержать примеси сероводорода и некоторых серусодержащих органических соединений. Допустимые концентрации серы при использо нии некоторых катализаторов составляют 5 10 -1 10 %H2S и 2 10 органической серы. Если конвертируемьА газ содержит OS, последний гидролизуется до СО и H S в ходе конверсии /8/. [c.165]

    Как и предыдущая реакция, эта реакция является одним из классических синтезов Сабатье /44/, в котором спирт и сероводород реагируют с образованием меркаптанов и сульфидов. Реакция по своим характеристикам аналогична приведенной выше для алкиламинов. Процесс получения меркаптана протекает при 250-400°С, атмосферном давлении, среднечасовой объемной скорости подачи жидкости (в расчете на спирт) 0,3-3 ч и большом избытке HjS (3-7 молей [c.336]

    Способность цеолитов адсорбировать молекулы определенных размеров широко используют для очистки и разделения нефтепродуктов очистки газов и жидкостей, удаления двуокиси углерода, сероводорода и других сернистых соединений, повышения октанового числа бензинов (на 5—26 пунктов) в результате удаления н-алканов. В настоящее время цеолиты широкр применяют для выделения к-алканов из нефтяных фракций —от бензиновых до газойлевых включительно с содержанием н-алканов около 20% (масс.). Выделенные нормальные парафиновые углеводороды используют при производстве белковых веществ, моющих средств и других продуктов нефтехимического синтеза. Чистота н-алканов, полученных разделением на цеолитах, значительно выше, чем при выделении другими методами (более 98% при разделении цеолитами и 90—96% при разделении карбамидом). Одновременно с н-алканами получают денормализат — смесь изопарафиновых и циклических угл ёводородов. [c.253]


Смотреть страницы где упоминается термин Сероводород синтез: [c.422]    [c.526]    [c.422]    [c.526]    [c.100]    [c.28]    [c.71]    [c.136]    [c.271]    [c.271]    [c.156]    [c.238]    [c.221]    [c.9]    [c.378]   
Лекционные опыты по общей химии (1950) -- [ c.176 ]

Лекционные опыты и демонстрации по общей и неорганической химии (1976) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен, диеновые синтезы сероводорода

Водородная коррозия. Коррозия сероводородом. Аппаратура. Трубчатые печи для нагрева сырья. Реакционные камеры. Затворы реакционных камер Теплообменные аппараты и холодильники. Насосы, компрессоры Каталитический синтез бензина из водорода и окиси углерода

Изобутилен, диеновые синтезы сероводорода

Методы синтеза аминотиолов Замещение спиртового гидроксила на тиольную (сульфгидрильную) группу действием сероводорода

Очистка синтез-газа от сероводорода

Сероводород Синтез сероводорода

Сероводород в побочных продуктах синтеза сероуглерода

Сероводород, определение по синтезу красителя

Синтез диоксида углерода. Синтез оксида углерода. Синтез диоксида серы. Синтез сероводорода. Синтез хлора. Синтез хлористого водорода. Синтез бромистого водорода Работа с металлической ртутью

Синтез сероводорода при нагревании

Синтез сероуглерода из углеводородов и сероводорода

Состав продуктов синтеза на кобальтовых сероводорода



© 2025 chem21.info Реклама на сайте