Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород Синтез сероводорода

    Опыт 209. Синтез сероводорода при нагревании [c.115]

    Сероводород можно получить путем непосредственного соединения серы с водородом S + Нг H2S, Равновесие этой реакции смещено в сторону образования HjS при температурах до 350 °С. Выше этой температуры ускоряется обратная реакция. При 1700°С наступает полная термическая диссоциация сероводорода. Практически сероводород получают не прямым синтезом серы и водорода, а действием разбавленных кислот на сульфиды некоторых металлов  [c.285]


    В нефтезаводских и природных газах наряду с сероводородом в небольших количествах содержатся также меркаптаны, тиофены и другие соединения серы. Если газ предназначается только для бытовых нужд, то удаление вышеуказанной органической серы не требуется. Однако если газ применяется для каталитических процессов синтеза, удаление всех сернистых соединений из газа является обязательным. Удаление органических сернокислых соединений из газов осуществляют каталитическими методами при высоких температурах. [c.211]

    Если газ содержит не менее 0,5—0,8% кислорода, регенерация поглотительной массы происходит одновременно с адсорбцией сероводорода. Оставшийся в газе кислород (около 0,3%), не израсходованный на регенерацию, при дальнейшей переработке газа связывается в воду при сжигании части водорода. Обычно для этой цели расходуется около 1 % водорода, направляемого на синтез аммиака. [c.146]

Рис. 59. Прибор для синтеза сероводорода. Рис. 59. Прибор для синтеза сероводорода.
    Разложение серусодержащих соединений. Сера входит в состав некоторых белков. При гидролитическом распаде белков она восстанавливается до сероводорода, который представляет собой токсичное соединение для многих групп микроорганизмов. Но в водоемах и почве встречаются серобактерии, окисляющие восстановленные соединения серы до свободной серы и сульфатов. Эти бактерии живут при высоких концентрациях сероводорода в окружающей среде. Сероводород для них служит источником энергии для синтеза органического вещества. [c.261]

    Синтез сероводорода из серы и водорода. [c.144]

    Опыт 199. Синтез сероводорода. [c.141]

    На базе нефти выросли, кроме того, такие мощные неорганические производства, как получение серы и серной кислоты из сероводорода, синтез аммиака. [c.189]

    Требования к углеводородному сырью. К углеводородному сырью для нефтехимических процессов обычно предъявляют значительно более жесткие требования, чем к сырью для процессов переработки нефти. Реакции, используемые в нефтехимическом синтезе, большей частью каталитические или радикально-цепные, причем для получения требуемых продуктов необходима высокая селективность катализатора, совершенно недопустимы побочные реакции и т. д. Поэтому требуется высокая степень чистоты сырья. Так, для производства этилового спирта прямой гидратацией этилена требуется 97—98 %-ный этилен, практически свободный от сероводорода [до 0,002 % (об.) НгЗ]. Для производства полиэтилена высокого давления требуется 99,99 %-ный этилен, совершенно свободный от ацетилена. Для ряда процессов недопустимо наличие в газе воды, оксида и диоксида углерода, сероводорода, аммиака и других реакционноспособных примесей. [c.19]


Рис. 92. Синтез сероводорода и его растворение в воде. Рис. 92. <a href="/info/269350">Синтез сероводорода</a> и его растворение в воде.
    Система метан-сероводород. Использование сероводорода в качестве серусодержащего сырья в процессе синтеза сероуглерода вместо элементарной серы представляет интерес, поскольку его отходы при промышленном получении С8, из метана, при переработке нефти, при очистке коксовых газов и в ряде химических производств настолько велики, что вполне могли бы создать сырьевую базу. [c.46]

    Синтез сероуглерода из углеводородов и серы. Предпосылками осуществления каталитического процесса синтеза сероуглерода из углеводородов и серы являются, с одной стороны, необходимость проведения реакции в возможно более низкой температурной области из-за высокой корродирующей способности паров серы, а с другой, заманчивые перспективы вести синтез по реакции СН4+82 СЗг+2Н2, что связано с нестабильностью сероводорода при температурах выше 800 К. Последнее обстоятельство бьшо впервые изучено Де Симо, который достиг 80%-го использования серы при получении сероуглерода на катализаторе (сернистые металлы). [c.68]

    В ряде случаев в лабораторных условиях необходима специальная установка для получения газообразного реагента. Простсйп1яя установка, пригодная для синтеза ацетилена, хлора, хлороводорода, сероводорода и некоторых других газов, изображена па рис. 42. В колбу I и капельную воронку 2 помещают исходные реагенты для синтеза газа. Так, для синтеза ацетилена в колбу помещают карбид кальция, а в воронку — насыщенный водный раствор хлорида калия, для синтеза хлора в колбу насыпают перманганат калия, а в воронку— концентрированную хлороводородную кислоту, для получения хлороводорода в колбу — концентрированную хлороводородную кислоту, в воронк — концентрированную серную кислоту, для синтеза сероводорода в колбу — сульфид железа, в воронку — концентрированную хлороводородную кислоту. Склянка Тищенко 4 и адсорбционная колонка 5 предназначены для очист- [c.74]

    Водородные соединения серы — сульфаны состава НгЗи (и = 1+8), молекулы которых (как и полисульфидные ионы 5 ) содержат цепи -5-5-... Исключением является только молекула сероводорода НгЗ. Сероводород растворим в воде — (сероводородная вода) максимальная концентрация Н25 в водном растворе составляет 0,1 моль/л. Растворы НаЗ имеют pH < 7 вследствие протолиза. Растворы сульфидов и гидросульфидов щелочных и щелочноземельных металлов имеют pH > 7 вследствие гидролиза. Большинство сульфидов тяжелых металлов практически нерастворимы в воде. Сероводород и сульфиды содержат серу в низшей степени окисления -II и являются сильными восстановителями. Сильные окислители могут окислять серу (-II) не только до сводобной серы, но также до серы (IV) и серы (VI). В промышленности сероводород полз чают прямым синтезом из водорода и серы, а в лаборатории — гидролизом ковалентных сульфидов или реакциями сульфидов с сильными кислотами-неокислителями. [c.141]

    У цианобактерий обнаружена способность к бескислородному фотосинтезу, связанная с отключением II фотосистемы при сохранении активности I фотосистемы (см. рис. 75, В). В этих условиях у них возникает потребность в иных, чем Н2О, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, НагЗгОз), Н2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом, связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерий из разных групп, но активность фиксации СО2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции СО2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Os illatoria limneti a, вьще-ленная из озера с высоким содержанием сероводорода. Способность цианобактерий переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение. [c.314]

    Именно такой способ подротовки исходного газа применяется на большинстве вновь создаваемых крупных агрегатах производства метанола. Так как синтез метанола в крупных агрегатах осуществляется на медьсодержащих катализаторах, к содержанию в газе соединений серы, хлора, мышьяка и др. предъявляют повышенные требования. Например, содержание соединений серы не должно превышать 0,1 мг/м , а хлоридов — 0,01 мг/м Способ очистки газа зависит от вида используемого сырья. При использовании природного газа обычно применяют двухступенчатую очистку газа от соединений серы. Вначале гидрируются органические соединения серы до сероводорода на никель- или кобальтмолибденовом катализаторе при 380—400 °С, затем образовавшийся сероводород поглощается активным оксидом цинка [10, И]. [c.26]


    Этот меркаптан был ранее синтезирован нами в присутствии алюмо-силикатного катализатора [6]. При реакции тримера пропилена с газообразным сероводородом в присутствии хлористого алюминия в условиях синтеза трет-ЩЩ содержание нонилмеркаптана в продуктах реакции составляло 75 вес. % при содержании полимеров 8,6%. Серии опытов с применением метода Бокса—Уильсона [2] имели целью снижение выхода полимеров. Найденные оптимальные условия синтеза нонилмеркаптана см. в табл. 4, № 2. Выход полимеров при этом снижен до 3—4%. Полученный нонилмеркаптан по температуре кипения, коэффициенту преломления и плотности практически не отличался от синтезированного в присутствии алюмосиликатного катализатора. [c.8]

    В процессе разработки нефтегазовых и газоконденсатных месторождений, переработки нефти и газа и нефтехимического синтеза в атмосферу поступают следующие соединения углеводороды низкокипящих фракций сырых нефтей газы, растворенные ранее в нефтях и попутных пластовых водах, - I роводород, двуокись углерода, азот, метан, этан, пропан газы перерабатывающих и нефтехимических производств — сероводород, двуокись серы, окись углерода, окислы азота, отдельные алканы и ароматические углеводороды. Обогащение воздущной среды углеводородами происходит в результате их испарения при разливах нефти на земной поверхности, из резервуаров для хранения сырых нефтей и нефтепродуктов при атмосферном давлении газовыбросов скважин, газовыбросов отмеченных выше предприятий, испарения в градирнях (до 2500 т/год) дегазации сточных вод в открытой канализации, накопителях и очистных сооружениях (нефтеловушки и тд.). По данным Е.А. Миронова [142], в открытой канализации из 1 м сточных вод выделяется 6—25 л газов в открытых очистных сооружениях количество выделяющихся газов составляет 6—100 л/м ., В газовыбросах нефтегазоперерабатывающих и нефтехимических предприятий присутствуют, помимо алканов, фенол, бензол, жирные кислоты, канцерогенные соединения 3,4-бензпирен, 1,12-бензперилен, 1,2,5,6-дибензантрацен 1,2,3,4-дибензантрацен и неканцерогенный антрацен [241]. Часть углеводородов захватывается атмосферными осадками и поступает с ними в грунтовые воды. Таким образом, на больших площадях грунтовые воды подвергаются частичной техногенной метаморфизации. [c.195]

    Результаты опытов по отравлению в реакторах с неподвижным слоем легче всего поддаются интерпретации, если катализатор отравлен заранее. Для этого катализатор погружают в раствор с известной концентрацией яда, так что можно ожидать, что содержание яда во всех зернах катализатора окажется одинаковым. Затем отравленный катализатор испытывают в реакторе с неподвижным слоем, где яд равномерно распределен по слою катализатора, но его распределение внутри зерен может быть неоднородным. Хотя результаты таких опытов весьма полезны и поддаются непосредственному истолкованию, они могут отличаться от результатов тех опытов, где отравление катализатора происходит в ходе реакции, так как а) во время предварительного отравления катализатор не мог быть в своем стационарном состоянии ж б) предварительно отравленный катализатор не может прийти в то стационарное состояние, в котором он был бы при работе на неотравленном сырье. Некоторые из этих трудностей можно проиллюстрировать на примере предварительного отравления соединениями серы восстановленного плавленого железного катализатора (Fe304 Mg0-K20) для синтеза Фишера — Тропша [70]. Восстановленный катализатор с удельной поверхностью около 15 м /г железа был погружен в раствор соединения серы в гексане, проанализирован и испытан в смеси IH2 + 1G0 при 21,4 атм. При содержании серы в виде HgS 8 мг на 1 г железа относительная активность катализатора снижалась до 10%, а при содержании серы около 10 мг на 1 г железа — до 1%. Последнее количество серы достаточно для полного хемосорбционного покрытия железа, находящегося на поверхности, и для реакции со всей щелочью. Предварительные работы показали, что катализатор сильно окисляется во время синтеза. После 10 дней синтеза больше 70% железа превратилось в магнетит и удельная поверхность уменьшилась почти до 1,0 м /г железа. Однако активность катализатора в опытах с чистым газом оставалась постоянной. При добавлении в условиях опыта сероводорода в исходную смесь относительная активность свежего катализатора понизилась до 10% при введении всего лишь 0,6 мг серы на 1 г железа [49]. В этом примере экстраполяция данных, полученных с предварительно отравленным катализато- [c.43]

    Синтез ЬааЗд осуществляли на установке, показанной на рис. 13. Водород очищали от кислорода, пропуская его через трубку 1, заполненную платинированным асбестом и нагреваемую до температуры 200—250° С, и осушая концентрированной серной кислотой и фосфорным ангидридом. Очищенный водород поступал в реактор синтеза сероводорода 4, где проходил над расплавленной серой, взаимодействуя с парами серы с образованием сероводорода. Температуру в реакторе поддерживали равной 520—540° С, что соответствует оптимальной зависимости выхода сероводорода от температуры. [c.62]

    Для синтеза исходных тиофеновых аминокислот был применен способ Штреккера — действие цианистого аммония на 2-тиофеналь-дегиды и последующее омыление образовавшихся аминонитрилов. Аминокислоты выделялись из реакционной массы в виде их медных солей, которые затем разлагались сероводородом. Указанным путем были синтезированы а-амино-(2-тиенил)-, а-амино-(5-ме-тил-2-тиенил)- и а-амино-(5-этил-2-тиенил)уксусные кислоты. ВДС этих соединений осуш ествлялась нагреванием растворов их натриевых солей в воде с избытком скелетного никеля. Таким путем с удовлетворительными выходами получены а-аминокапроно-вая, а-аминоэнантовая и а-аминокаприловая кислоты. [c.288]

    Для сравнения методов очистки и их техноэкономических показателей рассмотрим извлечение из газов сероводорода. Для очистки от этой токсичной примеси применяются абсорбционный, адсорбционный и каталитический способы. Абсорбционный способ очистки от H2S растворами этаноламинов или мышьяково-содовым раствором применяют в производстве водорода для синтеза аммиака. Для очистки выхлопных газов от H2S применяют иногда более дешевые растворы карбонатов щелочны металлов, аммиака, суспензии гидроокиси кальция, гидроокиси железа (III) в содовом растворе (железосодовый раствор) и др. Во всех методах в жидкой фазе протекают реакции, повышающие скорость процесса и степень извлечения H2S. Отработанные поглотительные растворы необходимо регенерировать во избежание новых источников загрязнения водоемов. Все абсорбционные очистительные установки, состоящие из башен с насадкой, работают при низких температурах 20—30° С и атмосферном или повышенном давлении (до 30 ат). Хемосорбция сопровождается десорбционными стадиями регенерации поглотительных растворов (при нагреве или перегонке в вакууме с выделением более концентрированного сероводорода, идущего на производство серной кислоты). При содово-мышьяковом способе продукты регенерации — сера и тиосульфат натрия. Принципиальная схема мышьяково-содовой очистки газов от сероводорода представлена на рис. 116. [c.268]

    Непрерывный ток газа высокой чистоты можно обеспечить за счет синтеза сероводорода из элементов. С этой целью очень чистую, многократно нере-кристаллизованную из сероуглерода серу испаряют в круглодонной колбе из тугоплавкого стекла. Пары серы смешивают с водородом и направляют в асбоцементную трубку, наполненную пемзой. Длина трубки около 1 м, температура приблизительно 600°. Проходя через нее, газы вступают между собой во взаимодействие. [c.218]

    Сравнение теплот образования воды и сероводорода и энергии связей водорода с кислородом и серой (АЯн о = 57,8 /скал, = — 4,8 ккал и энергия связи Н—ОН 116 ккал, а Н—5—Н 90 ккал) свидетельствуют о значительно меньшей химической активности серы по сравнению с кислородом. Смесь наров серы с водородом не взрывается, как смесь водорода с кислородом. Синтез сероводорода из элементов — обратимый процесс и ограничен, следовательно, равновесным состоянием, тогда как вода практически не диссоциирует даже при очень высоких температурах. [c.89]


Смотреть страницы где упоминается термин Сероводород Синтез сероводорода: [c.221]    [c.31]    [c.281]    [c.306]    [c.422]    [c.526]    [c.422]    [c.526]    [c.221]    [c.23]    [c.176]    [c.257]    [c.79]    [c.100]   
Смотреть главы в:

Лекционные опыты по общей химии -> Сероводород Синтез сероводорода




ПОИСК





Смотрите так же термины и статьи:

Сероводород синтез



© 2025 chem21.info Реклама на сайте