Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак в диметилсульфоксиде

    Подобно аммиаку, диметилсульфоксид образует иопный комплекс с дибораном [156] [c.201]

    Напишите выражения для ионных произведений этилендиамина HjN— СИз— Hj—NHj, жидкого аммиака NHs и диметилсульфоксида (СНз)250. [c.113]

    Диметилсульфоксид Аммиак (жидкий). Ацетонитрил. . . Метилэтилкетон [c.417]

    Для получения олефинов был использован ряд сложных эфиров, таких, как ацетаты [103—110], арилсульфонаты (1111, стеараты [П2], карбонаты и карбаматы [ИЗ] и бораты [114]. Отщепление происходило в ре.чультате простого нагревания или при действии основания, такого, как амид лития в жидком аммиаке [107], пиридин [1121, 2,6-лутидин [108], этилат натрия [110], диметилсульфоксид [c.103]


    Образование продуктов, обладающих флуоресценцией (сами реагенты не флуоресцируют), позволило значительно увеличить чувствительность метода. С флуорескамином открывается 10 —10 " молей аминокислот. В отличие от нингидрина реакции не мешает присутствие аммиака. Реакция протекает при комнатной температуре при pH 7,0— 9,0. Поскольку флуорескамин в водной среде разрушается (в течение нескольких секунд), для приготовления раствора используют безводные жидкости (ацетон, ацетонитрил, диметилсульфоксид и др.). Продукт реакции стабилен в течение нескольких часов. Пептиды и белки, проявленные флуорескамином, могут использоваться для определения аминокислотного состава и аминокислотной последовательности. [c.130]

    Амино-0нс-[7-бром-5-(2-хлорфенил)-1,2-дигидро-ЗЯ-1,4-бенздиазепин-2-он] (3). Через суспензию 2 г (0.0052 моль) соединения 2 в 100 мл сухого диоксана (при охлаждении и перемешивании) пропускают ток сухого аммиака в течение 15 мин. Реакционную смесь фильтруют, промывают осадок водой до нейтральной реакции промывных вод, затем двумя порциями хлороформа по 25 мл, сушат на воздухе и кристаллизуют из диметилсульфоксида. Получают бесцветные кристаллы. Выход  [c.518]

    Титрование кислот можно проводить почти в любом растворителе, в котором растворяется проба и титрующее соединение (ср. гл. 1, разд. III об использовании диметилсульфоксида). Ниже описан метод [80], который предназначен для титрования очень слабых кислот. В этом методе пробу добавляют к избытку раствора аммиака и нейтрализуют ион аммония стандартным раствором гидроокиси лития. [c.147]

    Сульфатный лигнин имеет плотность 1300 кг/м . Он растворим в водных растворах аммиака и гидроксидов щелочных металлов, а также в диоксане, этиленгликоле, пиридине, фурфуроле, диметилсульфоксиде. В значительных количествах раство- [c.42]

    Реакция восстановления кислорода изучалась во многих неводных растворителях. В растворителях с относительно высокими протонодонорными свойствами были получены те же результаты, что и в воде. Подобным образом восстанавливается кислород в формамиде [97] и в диметилсульфоксиде или диметилформамиде в присутствии таких доноров протонов, как фенол или хлористый водород. Результаты, полученные при измерении полярограмм кислорода в жидком аммиаке, также были интерпретированы как подтверждение перекисного механизма восстановления [29]. Однако это объяснение было поставлено под сомнение более поздними результатами, полученными в других растворителях [98]. [c.443]

    Что касается ионизирующей способности растворителя, то два фактора заслуживают особого упоминания. Прежде всего ионизирующая способность возрастает при увеличении диэлектрической проницаемости, так как при этом становится более эффективным разделение ионов — силы, действующие между заряженными частицами находятся в обратной зависимости от диэлектрической проницаемости среды (стр. 155). По этой причине вода, диэлектрическая проницаемость которой равна 80, должна быть гораздо более эффективна, чем углеводород с диэлектрической проницаемостью 2. Сходным и возможно более важным фактором является способность растворителя сольватировать разделенные ионы. Катионы наиболее эффективно сольватируются соединениями элементов первого периода периодической системы, имеющими неподеленные пары электронов. Примерами могут служить аммиак, вода, спирты, карбоновые кислоты, сернистый ангидрид и диметилсульфоксид (СН 3)280. Анионы сольватируются наиболее эффективно растворителями, в которых атомы водорода соединены с сильно электроотрицательными элементами Y, так что связь Н — Y значительно поляризована. В случае таких растворителей водородные связи между растворителем и уходящей группой способствуют ионизации примерно таким же образом, каким ион серебра катализирует ионизацию алкилгалогенидов (стр. 272). [c.274]


    Согласно данным электрокапиллярных измерений, специфическая адсорбция ионов Li , Na" , и NH4 из растворов диметилсульфоксида незначительна. Это подтверждается и кривыми емкости, на которых в катодной области наблюдается небольшое увеличение емкости для ионов шелочных металлов в следующем порядке К <С Na+ < Li+. Однако для иона NH кривая емкости пересекает другие кривые и поднимается вверх при крайних отрицательных потенциалах, по-видимому, из-за некоторой специфической адсорбции его, что также было найдено в растворах аммиака, метанола и N-метилацетамида. Увеличение емкости в ряду щелочных металлов (обнаруженное также в формамидах) соответствует уменьшению кристаллографического радиуса катиона. Однако корреляция значения емкости с кристаллографическим радиусом подразумевает слабую сольватацию катиона, тогда как диметилсульфоксид, вероятно, является более сильно сольватирующей средой для катионов, чем вода, где наблюдается противоположная тенденция в изменении емкости. Достоверные сведения об адсорбции катионов из сульфолана отсутствуют. [c.126]

    Изменение соотношения Кз/Кнап еще больше по сравнению с изменениями соотношений констант диссоциации кислот и оснований улучшает условия титрования, если соотношение Кз1Кнап уменьшается. Например, указанное соотношение может уменьшаться в десятки тысяч раз в растворителях, имеющих малые значения Кз (жидкий аммиак, диметилсульфоксид, диметилформамид, ацетонитрил). Сильное изменение соотношения Кз1Кнап позволяет осуществлять дифференцированное титрование смесей, не титруемых в других растворителях, а именно минеральных и органических кислот алифатических и ароматических кислот аминокислот фенолов и их смесей с карбоновыми кислотами сульфокислот сильных, слабых и очень слабых кислот (оснований) многокомпонентных смесей солей с кислотами и т. д. [c.198]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Общая теория кислот и оснований исходит из того, что свободный протон не может существовать в растворе. Поэтому кислотные или основные свойства проявляются лишь тогда, когда сам растворитель обладает основными или кислотными свойствами. В связи с этим различают четыре типа растворителей 1) апротонные, не способные присоединять или отдавать протоны (диметилформамид, диметилсульфоксид, ацетонитрил, гексаметилфосфортриамид) 2) протофильные — акцепторы протонов (вода, спирты, амины, жидкий аммиак) 3) протоген-ные — доноры протонов (вода, спирты, безводные уксусная, муравьиная, серная кислоты, жидкие хлористый и фтористый водород) 4) ам-фипротные растворители, обладающие кислотными и основными функциями (вода, этанол и др.). [c.83]

    С помощью реакций, аналогичных реакциям 13-1 и 13-4, можно получить арилтиолы и тиоэфиры [79]. Активированные арилгалогениды обычно дают хорошие выходы, но побочные реакции могут оказаться существенными. Под действием SAr-можно получить диарилсульфиды. В реакцию с SAr вступают даже неактивированные галогениды, если при этом используются такие полярные апротонные растворители, как диметилформамид [80], диметилсульфоксид [81] или гексаметилфосфортриамид [82], хотя по своему механизму процесс остается нуклеофильным замещением. Сульфиды можно также получить с хорошими выходами при обработке неактивированных арилгалогенидов SAr или SR в присутствии каталитических количеств (Pli3P)4Pd [83]. Диарилсульфиды получаются с высокими выходами при обработке неактивированных арилиодидов ArS в жидком аммиаке при облучении [84]. По-видимому, в этом случае реакция идет по механизму SrnI. [c.22]

    Гарднер (1963) применил к циклононатриену-1,2,6 (X) метод восстановления алленов в цис-олефшы натрием в жидком аммиаке и получил с отличным выходом циклононадиен-1,5 (см. выше). Под действием грет-бутилата калия в диметилсульфоксиде триен X изомеризуется, образуя два бициклических диена. [c.94]

    С. э. характеризуется широкой интенсивной полосой поглощения в видимой шга ИК области и узкой одиночной линией (синглетом) в спектре ЭПР. Максимумы оптич. полос поглощения С. э. в воде и аммиаке соответствуют 720 и 1850 нм, а ширш а линий ЭПР в этих жидкостях порядка миллионных долей Тл. В др. жидкостях максимумы оптич. полос поглощения находятся (им) при 560 в этиленгликоле, 625 а метаноле, 680 в этаноле, 650 в деканоле, 2300 в диэтиловом эфире, 2180 в тетрагидрофуране, 1800 в диоксане, 1920 в метиламине, 1950 в этиламине, 2050 в диэтиламине, 1300 в этилендиамине, 1680 в N,N-димeтилфopмaмидe, 2200 в гексаметилфосфортриамиде, 1015 в гидразине, 1580 в триб тилфосфате (при 198 К), 1500 в диметилсульфоксиде, 1600 в гексане, 730 в расплаве Na l (при 1073 К) и т.д. [c.379]


    Большинству технологических требований сравнительно хорошо удовлетворяют диметилформамид, N-мeтилпиppoлидoн, диметилсульфоксид, гексаметилфосфортриамид, в меньшей степени 7-бутиро-лактон, метанол и жидкий аммиак. Перечисленные органические неществэ можно разделить на низкотемпературные растворители (ацетон, метанол, аммиак) и растворители, используемые при обычной температуре, из которых наибольшее промышленное применение нашли лишь диметилформамид (ДМФ) и К-метилпирролидон (NMП). [c.455]

    В среде диметилсульфоксида и гексаметилфосфамида удалось осуществить катализируемую грег-бутоксид-анионом реакцию присоединения ароматических гетероциклических соединений к ненасыщенным углеводородам с сопряженными кратными связями (гомогенное алкилирование). Известна также катализируемая основанием реакция изомеризации алкинов, протекающая в этанольном растворе гидроксида калия. По своей депротонирующей способности эти системы занимают промежуточное положение между системами гидроксид-ион — вода и амид натрия — аммиак. В роли депротонирующего агента может выступать также анион диметилсульфоксида. [c.83]

    Для щелочной обработки используют главным образом водные растворы гидроксидов калия и натрия. Гидроксид калия предпочитают в основном из-за того, что образующийся при нейтрализации щелочного экстракта ацетат калия по сравнению с ацетатом натрия лучше растворяется в спирте, используемом для осаждения полиоз. ГидроксиЫ лития и кальция, а также четвертичного аммония тоже могут переводить полиозы в раствор, но их практически не используют. Для предварительного набухания перед щелочной обработкой или в качестве экстрагирующего полиозы растворителя можно применять жидкий аммиак. При необходимости избежать дезацетили-рования перед щелочной обработкой или после кратковременного набухания в жидком аммиаке в качестве растворителя используют диметилсульфоксид (ДМСО) или горячую воду. Добавки борной кислоты или боратов к растворам гидроксидов натрия и калия [c.32]

    Вард, Райт и Крейг [44] изучали восстановление дифторамина в воде, этаноле, диметилформамиде и диметилсульфоксиде. Во всех этих системах НЫРг восстанавливается с образованием аммиака и фтористого соединения по реакции, подобной восстановлению связи углерод — фтор. Полярографические данные приведены в табл. 7.3. [c.212]

    Известно, что ионы щелочных металлов восстанавливаются на ртутном катоде в воде, ацетоиитриле, пропионитриле, изобутиро-нитриле, бензонитриле, фенилацетонитриле, диметилформамиде, диметилсульфоксиде, сульфолане, пропиленкарбонате, аммиаке, этиденамине, морфолине, ацетоне и 1,2-эпоксибутане. На катодах с низким перенапряжением восстановление вообще невозможно, так как доступная для исследования область потенциалов слишком мала. Реакции восстановления ионов до амальгам, которые обычно устойчивы в апротонных растворителях, в воде или спиртах, конечно, не идут. Полярографические данные приведены в табл. 14.2. [c.407]

    В растворах с некомплексообразующими индифферентными электролитами двухступенчатые полярограммы наблюдаются в ацетонитриле, пропионитриле, изобутиронитриле, фенилацетонитриле, бензонитриле [5,12,15,19,34], ацетоне [1,5], диметилсульфоксиде [22], этилендиамине [58], аммиаке [29], пропиленкарбонате [50], уксусной, изомасляной и акриловой кислотах [59]. Неожиданным является тот факт, что в пропионовой кислоте происходит дис-пропорционировапие. Оно имеет место также в диметилформамиде [21,23], формамиде [4] и Ы-метилацетамиде [14]. Мак-Мастер и др. [22] наблюдали две волны, однако после дальнейших исследований было высказано предположение, что эти волны могут быть обусловлены присутствием следов комплексообразующего аниона [23]. Хотя двухступенчатое восстановление наблюдается в различных растворителях, для меди(II) оно происходит при более положительных потенциалах, лем это требуется для окисления ртути, в результате чего нельзя надежно измерить потенциалы полуволны исключение составляет восстановление в ацетоне, уксусной кислоте, этилендиамине и аммиаке. Обратимость окислительно-восстановительных реакций меди исследовали в уксусной кислоте, проводя окисление на медно-амальгамном капельном электроде, а также восстановление на ртутном капельном электроде. Потенциалы полуволны окисления и Ьосстановления для обеих стадий совпадают, что указывает на обратимость этих реакций. Полярографические данные приведены в табл. 14,7. [c.424]

    Катодное восстановление пирографита и стеклоуглерода в органических растворах солей щелочных металлов и NR4+ было исследовано в [264], а в жидком аммиаке и аминах —в [265]. В растворителях, стабильных к восстановлению, таких, как диметилсульфоксид 1,2-диметоксиэтан, наблюдалось обратимое восстановление графита при потенциалах более положительных, чем потенциал разряда соответствующих катионов [266—268]. Процесс восстановления сопровождается внедрением катиона и зависит от его природы. В присутствии катионов больших размеров, например тетраоктиламмония, сульфониевых (RSMeaX") [c.94]

    При хроматографии в системе жидкая фаза—жидкая фаза иногда используют в качестве носителя силикагель. В этом случае в качестве подвижной фазы применяют этилацетат, содержащий диметилсульфоксид или диметилформамид [31], смесь метанол—вода (7 3) [32] или водно-насыщенный этилацетат [33]. Если используют растворитель, содержащий воду, например насыщенный водой бутанон, то следует проводить разделение на смеси силикагеля и окиси алюминия (1 1) в таком случае достигается оптимальная скорость подвижной фазы [34]. По этой причине наиболее подходящей подвижной фазой являются смеси нропанол-2—хлороформ—аммиак—вода в различных соотношениях [35, 36]. В работе Боннера с сотр. [37] описано разделение только на окиси алюминия (без силикагеля) с применением в качестве подвижной фазы различных смесей вода— этанол. [c.67]

    Было найдено, что при исследованиях методом газовой хроматографии анализируемые компоненты удобно разделить на две группы первая включает кислород, закись азота, двуокись углерода и вторая — эфир, галотан, хлороформ, трихлорэтилен. Предварительная работа проводилась с адсорбционными колонками, однако скоро стало очевидным, что в связи с большей воспроизводимостью данных и более короткими временами удерживания желательно применение распределительных колонок. Оказалось, что лучшей колонкой для разделения смеси кислорода, закиси азота и двуокиси углерода является колонка длиной 6,1 ж и внутренним диаметром 6,3 мм, заполненная огнеупорным кирпичом (силосел, фракция 52—60 меш, свободная от тонких частиц) последний пропитывается диметил сульфоксидом в количестве 20% по весу. Некоторые газы — двуокись серы, аммиак, ацетилен, двуокись углерода, закись азота — хорошо растворяются в диметилсульфоксиде, тогда как для большинства газов, включая кислород и азот, растворимость в нем ничтожна. Колонка работает при комнатной температуре (20°), объем пробы может составлять 3 мл. Обычно в качестве газа-носителя используется водород, скорость потока которого равна 30 мл/мин. Если аппаратура применяется во время операции, то, чтобы устранить опасность взрыва, водород заменяют гелием. [c.442]

    Те растворители и катализаторы, которые чаще всего применялись нами, оказались непригодными, так как в жидком бромистом водороде тиофен осмоляется, а раствор амида калия в жидком аммиаке металлирует тиофен [5] и разрушает фуран. Поэтому для изучения кислотного обмена тиофена и его производных мы воспользовались безводными трифторук-сусной и уксусной кислотами, а также их смесями, а опыты по основному обмену проводили в диметилсульфоксиде (ДМСО) при катализе трет-бу-тилатами лития или калия [6], взятыми в концентрации 0,3—0,4 моль л при которой изменение последней не отражается на скорости обмена [7]. [c.121]

    Полигидроксиметилен не растворяется в воде и органических растворителях, при действии уксусного ангидрида образует ацетат. Полпвини-ленкарбопат [170] получен полимеризацией мономера. Он разлагается при 250° С и растворим в диметилформамиде и диметилсульфоксиде, хуже в ацетоне. При гидролизе спиртовым аммиаком образует лоликарбамат  [c.194]

    Протонофильные этилендиамин, тетраметилгуанидин, аммиак, р/Сд- 30 (диметилсульфоксид, р /Сз = - [c.423]

Рис. 1.4. Зависимость поверхностного натяжения ртути Д7 от величины коэффициента поляризуемости растворителей по данным [18, 31]. 1 — вода 2 — метанол 3 — этанол 4 — н-пропанол 5 — н-бутанол 6 — /ирет-бутанол 7 — муравьиная кислота 8 — уксусная кислота 9 — масляная кислота 10 — этиленгликоль 11 — глицерин 12 — этиловый эфир 13 — хлороформ 14 — формамид 15 — диметилформамид 6 — диметилацетамид 17 — н-метилформамид 18 — н-метилпропионамид 19 — ацетонитрил 20 — ацетон 21 — диметилсульфоксид 22 — сульфолан 23 — диэтиленгликоль 24 — пиридин 25 — бензол 26 — аммиак Рис. 1.4. <a href="/info/73332">Зависимость поверхностного натяжения</a> ртути Д7 от <a href="/info/264139">величины коэффициента</a> <a href="/info/295796">поляризуемости растворителей</a> по данным [18, 31]. 1 — вода 2 — метанол 3 — этанол 4 — н-пропанол 5 — н-бутанол 6 — /ирет-бутанол 7 — <a href="/info/1150">муравьиная кислота</a> 8 — <a href="/info/1357">уксусная кислота</a> 9 — <a href="/info/1119">масляная кислота</a> 10 — этиленгликоль 11 — глицерин 12 — <a href="/info/17842">этиловый эфир</a> 13 — хлороформ 14 — формамид 15 — диметилформамид 6 — диметилацетамид 17 — н-метилформамид 18 — н-метилпропионамид 19 — ацетонитрил 20 — ацетон 21 — диметилсульфоксид 22 — сульфолан 23 — диэтиленгликоль 24 — пиридин 25 — бензол 26 — аммиак

Смотреть страницы где упоминается термин Аммиак в диметилсульфоксиде: [c.12]    [c.232]    [c.262]    [c.194]    [c.546]    [c.242]    [c.252]    [c.313]    [c.194]    [c.293]    [c.581]    [c.91]    [c.91]    [c.207]    [c.130]    [c.332]    [c.432]    [c.249]   
Основы химии карбанионов (1967) -- [ c.105 ]




ПОИСК







© 2025 chem21.info Реклама на сайте