Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрики-полимеры

    Ориентационная поляризация характерна лишь для полярных диэлектриков (полимеров) она существенно зависит от температуры. При низких температурах диэлектрическая проницаемость фактически близка к 8оо. Диполи — полярные группы, имеющиеся в полимерах, могут при этом лишь упруго колебаться при воздействии электрического поля. С увеличением температуры диполи приобретают энергию, достаточную для преодоления внутримолекулярного взаимодействия при этом осуществляется более полная ориентация в направлении приложенного поля. Вследствие этого поляризация резко возрастает, что вызывает рост диэлектрической проницаемости. В случае, если в диэлектрике имеется лишь один вид диполей, причем все они имеют одинаковое время релаксации, х вычисляют [69] по формуле  [c.112]


    Диэлектрические свойства полимеров. Высокомолекулярные органические соединения принадлежат к диэлектрикам, т. е. они практически не проводят электрического тока при обычных разностях потенци,алов, и только при очень большом напряжении поля может происходить так называемый пробой. Благодаря возможности изготовления полимеров с хорошим сочетанием диэлектрических свойств при высокой устойчивости к воздействию внешней среды, прн хороших механических свойствах и пр. их широко используют в качестве электроизолирующих материалов в электротехнике. [c.594]

    Из механических свойств фторопласта-4 следует отметить низкий коэффициент трения и ударную прочность при очень низких температурах. Нолностью фторированные полимеры относятся к категории отличных диэлектриков с низкими диэлектрическими потерями, которые практически не меняются при изменении температуры и частоты. [c.430]

    Последняя из показанных на рис. 2.3 термопар I имеет наиболее современное исполнение, это так называемая кабельная термопара. Электроды термопары протянуты здесь в бронированной оболочке 8 из хромоникелевой стали. Полость этой трубки заполнена прессованным под большим давлением полимером - диэлектриком 7, [c.28]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Удовлетворительных теоретических представлений о теплопроводности полимеров не существует. Даже для моделей со сферической структурой и для неполярных жидкостей построены лишь очень приблизительные аппроксимации, а для полимеров в твердом состоянии их нет вообще. Физики знают, что в металлах теплопередача осуществляется за счет электронной проводимости, а в диэлектриках — за счет атомных и молекулярных движений. Это же справедливо и для неэлектропроводных жидкостей. [c.119]


    Для полимерных электролитов проводимость полностью определяется ионизацией макромолекул. В пользу ионного характера проводимости полимеров свидетельствует распределение потенциала по толщине образца. Так, измерения такого распределения в образцах резины из СКН-26 показывают, что по форме оно совпадает с теоретическим, рассчитанным для материалов с ионной проводимостью, и наблюдаемым для низкомолекулярных диэлектриков, ионная природа проводимости которых доказана прямыми экспериментами. [c.72]

    В наиболее чистом виде соответствующие принципы реализуются в системах гибкоцепных некристаллизующихся полимеров с относительно слабыми межмолекулярными взаимодействиями (при очень сильных взаимодействиях характеристические времена т становятся трудно отличимыми от т обычных твердых тел). Поэтому, как указывалось в предисловии авторов, после отбраковки материала (в гл. I) будут рассматриваться термодинамика, физическая кинетика и статистика именно таких полимеров. Некоторые электродинамические проблемы, относимые обычно к области физики диэлектриков, будут рассмотрены в гл. VU. [c.16]

    Под действием внешнего электрического поля в диэлектриках (к которым относятся и многие полимеры) нарушается статистически равновесное распределение электрически заряженных частиц, что приводит к появлению отличного от нуля результирующего электрического момента, т. е. наступает поляризация. Поляризацию количественно характеризуют вектором поляризации Р, равным электрическому моменту единицы объема диэлектрика. Если диэлектрик однороден и смещение зарядов одинаково во всех точках, то вектор Р одинаков по всему диэлектрику. Такую поляризацию называют однородной. Поверхностная плотность поляризационных зарядов равна нормальной составляющей Р в данной точке поверхности. [c.231]

    Диэлектрические потери в полимерах связаны с возникающей в них поляризацией при наличии электрического поля, меняющегося во времени. Суммарная поляризация диэлектриков, имеющих [c.232]

    Уравнения (УП.2), (УП.З) получены Дебаем, при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют, и поэтому имеется одно время релаксации Однако в реальных диэлектриках, в частности, полимерах, процессам релаксации присуще распределение времен релаксации, описываемое релаксационным спектром . Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним значением времени релаксации был впервые принят во внимание Фуоссом и Кирквудом, которые прямым образом учли существование спектра времен релаксации Для полимеров . Учет распределения времени [c.235]

    Практически всем диэлектрикам, в том числе полимерам, присуще электретное состояние, характеризующееся наличием поверхностных зарядов и возникающее при воздействии на полимер таких внещних факторов, как электрическое поле повышенной напряженности, облучение электронами, ионами [58]. [c.253]

    Однако, хотя детали надмолекулярной организации или релаксационные характеристики влияют —и подчас решающим образом—на электрическую прочность полимеров, вряд ли можно рекомендовать само свойство электрической прочности применять для исследований структуры или структурных переходов. Для этого, как мы видели, есть более прямые и эффективные методы. Задача должна ставиться наоборот зная все структурные и релаксационные факторы, влияющие на электрическую прочность, следует выбирать оптимальные структуру и условия для технической эксплуатации полимеров как диэлектриков. [c.263]

    ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ. ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ И ПРОНИЦАЕМОСТЬ ПОЛИМЕРОВ [c.173]

    Явление поляризации диэлектриков Диэлектрические потери Уравнение Дебая Релаксационный спектр ф Природа диэлектрических потерь ф Обработка экспериментальных данных ф Процессы электрической релаксации в полимерах [c.173]

    Под действием внешнего электрического поля в диэлектриках (к которым относятся и многие полимеры) нарушается статистически равновесное распределение заряженных частиц, появляется отличный от нуля результирующий электрический момент, возникает поляризация. Электрическим или дипольным моментом системы зарядов называют вектор 1 = 2 г1г (где qi — заряд г-й частицы 1г — плечо -го диполя). Вектор дипольного момента каждого элементарного диполя направлен от отрицательного заряда к положительному. [c.173]

    Для большинства полимеров справедливо следующее соотношение между диэлектрической проницаемостью и абсолютной диэлектрической восприимчивостью е=1+Аа. При описании поведения диэлектриков в переменном электрическом поле для удобства математической обработки и физической интерпретации вводится [c.174]

    Другой тип энергетических потерь в диэлектриках связан с электронной Рэл и атомной Рат поляризациями, обусловленными смещениями (ток смещения) под действием электрического поля электронов, ядер, ионов или атомных групп (резонансное поглощение). Для практического применения диэлектриков представляет интерес рассмотрение деталей перехода от установившейся полной поляризации при низких частотах к поляризации при оптических частотах, так как они непосредственно связаны с разделением поляризации при низких частотах на ее составляющие ориентационную и деформационную (атомную и электронную). Резонансные потери проявляются при частотах Ю —10 Гц (миллиметровая и инфракрасная области длин волн). Существование их у полимеров обусловлено наличием собственных колебаний атомных групп. Некоторые полосы поглощения в инфракрасной области связаны с трансляционными движениями диполей. Характер изменения потерь энергии при этом имеет сходство с соответствующими зависимостями при дипольной релаксации. Мнимая составляющая " обобщенной диэлектрической проницаемости е изменяется в окрестности резонансной частоты примерно так же, как и при дипольной релаксации (проходит область максимума), хотя потери энергии в этом случае имеют другую природу и требуют иного аналитического описания. В то же время диэлектрическая проницаемость е при дипольной релаксации и резонансном поглощении изменяется ио-разному. [c.178]


    Различным диэлектрикам, в том числе и некоторым полимерам, присуще электретное состояние, характеризующееся наличием поверхностных зарядов и возникающее при воздействии на полимер таких внешних факторов, как электрическое поле повышенной напряженности, облучение электронами и ионами. Электреты представляют собой электрические аналоги постоянных магнитов и в окружающем их пространстве создают постоянное электрическое поле. Они являются постоянно поляризованными диэлектриками, имеющими на противоположных поверхностях заряды разных знаков, причем последние могут быть как связанными, так и свободными. Физические свойства электретов существенно зависят как от особенностей диэлектриков (их полярности и электропроводности), так и от режима изготовления (например, напряженности поля, температуры и времени поляризации). [c.193]

    Большинство ненаполненных полимеров являются диэлектриками, поэтому их электрические свойства в основном характеризуют диэлектрическими потерями и проницаемостью, удельным объемным и поверхностным сопротивлением, а также значением пробивного напряжения. Кроме того, для ряда полярных полимеров имеет место проявление электретного эффекта и термодеполяризации. [c.209]

    При этом на поверхностях диэлектрика (полимера) появятся поверхностные заряды с плотностью сгэфф. Полагая, что значения ОэФФ полностью учитывают поведение и распределение зарядов внутри диэлектрика, имеем для верхней и нижней поверхности диэлектрика  [c.37]

    Для уменьшения электрического сопротивления в твердые диэлектрики, диэлектрические жидкости и растворы полимеров (смесей) целесообразно вводить различные растворимые анти- т 1тические присадки, увеличивающие объемную электрическую пр эводимость этих материалов. Электропроводящие накопители (графит, сака, мелкодйсперсМый металл) образуют токопроводящие мостики, препятствующие электризации материалов. [c.173]

    Этот полимер обладает уникальной химической стойкостью, уже отме1енной ранее для фторуглеродов, и высокой термостойкостью, что и определяет области его применения. Он используется для изготовления различных деталей в химической аппаратуре и в качестве термостойкого диэлектрика. [c.167]

    Электрическая прочность. Как и во всех диэлектриках, при достижении некоторой напряженности электрического поля в полимерах возникает пробой, т. е. происходит электрический разряд через материал. Природа его мало отличается от природы пробоя в других диэлектриках он сопровождается образованием разветвленных каналов, по которым идет разряд. Пробою в полимерных диэлектриках предшествует микроориентация материала, связанная с его "сильной" поляризацией. Полярные полимеры имеют большую электрическую прочность, чем неполярные. Электрическая прочность резко уменьшается при переходе из застеклованного в высокоэластическое состояние. Введение наполнителя также резко уменьшает электрическую прочность. Знание величины электрической прочности в зависимости от толщины, формы и других параметров образца — обязательное условие успешного применения резин в качестве электро- [c.73]

    Поведение диэлектрика в переменном электрическом поле обусловлено его поляризацией, величина и направление которой изменяются вслед за изменением напряженности электрического поля. Поскольку величина диэлектрической постоянной обусловлена поляризацией полимера в электрическом поле, большие ее значения характерны для полярных полимеров, к числу которых из эластомеров относят полихлоропрены, бутадиен-нитрильные и фторкауг[уки. [c.74]

    Физические свойства электретов существенно зависят как от особенностей диэлектриков (их полярности и электропроводности), так и от режима изготовления (например, напряженности поля, температуры и времени поляризации). В зависимости от напряженности электрического поля можно получать из одного и того же вещества и гомо- и гетероэлектреты (совпадающие и несовпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов. Гетерозаряд обусловлен, прежде всего, ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводимостью диэлектрика. Образование гомозаряда связано с тем, что при высоких напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. Электретный эффект в твердых диэлектриках имеет объемный характер. В так называемом незакороченном состоянии электрет все время находится в электрическом поле, в результате чего происходит рассасывание объемного заряда. При плотном закорачивании электрета его внутреннее поле равно нулю [58, гл. I]. Время жизни электрета зависит от электропроводности как его самого, так и среды, а также от качества закорачивания. Поскольку возникновение электретного состояния связано с поляризацией и ориентацией, ему должно сопутствовать существенное увеличение оптической анизотропии. При кратковременной поляризации полимеров (в частности, ПММА) их оптическая анизотропия практически не проявляется. После резкого возрастания оптической анизотропии в интервале времен от 3 до 6 ч дальнейшее увеличение времени поляризации практически не повышает анизотропию, что свидетельствует о завершении ориентации. [c.253]

    Не все технически важные свойства полимеров удоб.ны для проведения структурных исследований методами релаксационной спек-трометрии (см. стр. 231). Электропроводность и электрическая прочность относятся именно к этой категории свойств. Более того, хотя эти характеристики и взаимосвязаны, электропроводность вообще нежелательна при использовании полимерных диэлектриков, а при исследовании их методами, описанными в 1 и 2, электропроводность — своего рода помеха, поскольку ограничивает в области высоких температур применимость принципа ТВЭ. Известны случаи, когда в этой области путали диэлектрические потери с диссипацией энергии за счет наличия электропроводности. [c.261]

    Однако методом ЯКР можно весьма просто измерять внутренние напряжения в полимерных диэлектриках. Внутренние напряжения в кристаллах, искажая кристаллическую решетку, меняют градиент внутреннего электрического поля. Следовательно, меняется и резонансная частота. Если измерить зависимость резонансной частоты в кристаллическом порошке, содержащем ядра, обладающие квадрупольньш моментом, от давления, а затем ввести его в полимер, то окажется возможным измерять внутренние напряжения в полимерах. Этот метод был использован, например, для изучения процесса отверждения эпоксидной смолы. После отверждения ее при 80 °С в течение 1,5 ч в смоле появляются внутренние давления, равные (160 30) 10 Па, а после ч давление доходит до (190 30) 10 Па. [c.278]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Л. Поляризация Электрические свойства полимеров харак-диэлектриков. геризуются диэлектрическими потерями [c.173]

    Различают изотропные (к которым могут быть отнесены многие неполярные и полярные полимеры) и анизотропные (к ним относятся некоторые многокомпонентные гетерогенные смеси твердых вещее, о, а также многослойные конструкционные системы) диэлектрики. Смещение положительных зарядов в изотропных полимерных диэлектриках происходит в направлении электрического поля. При этом оказывается справедливым соотношение Р = кагоЕ, где / а —скалярная величина, называемая абсолютной диэлектрической восприимчивостью] Е —вектор напряженности электрического поля ео = 8,85-10- 2 Ф ш электрическая постоянная. Вектор Р на- [c.173]

    Уравнения (7.2) и (7.3) получены Дебаем при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют между собой, поэтому имеется одно время релаксации т. Однако в реальных диэлектриках, в частности полимерах, процессам релаксации присуще распределение времен Xi, описываемое релаксационным спектром. Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним т, был впервые принят во внимание Фуоссом и Кирквудом [7.2], которые прямым образом учли существование спектра времен релаксации для полимеров. Учет распределения времен релаксации в конденсированных системах, в которых отсутствуют дальнодействующие силы, сделан в теории диэлектрических свойств слабополярных систем. Если функция распределершя времен релаксации является симметричной, то для обобщенной диэлектрической проницаемости может быть использовано модифицированное уравнение Дебая вида [c.177]

    В зависимости от напряженности электрического поля можно получать из одного и того же вещества гомо- и гетероэлектреты (совпадающие и не совпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов. Гетерозаряд обусловлен прежде всего ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводностью диэлектрика. Образование гомозаряда связано с тем, что при любых напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. [c.193]

    Для реальных полимерных материалов, применяющихся в качестве диэлектриков для электро- и радиоизоляции, электрическая проводимость зависит от их состава, а также от молекулярного строения и надмолекулярной структуры полимеров. Существенное влияние на а полимерных диэлектриков оказывают также температура, электрические поля и воздействие ионизирующей радиации. [c.200]

    С повышением размеров сферолитов уменьшается плотность их упаковки и Стост уменьшается. Некоторое возрастание ст при дальнейшем повышении диаметра сферолитов связано с изменением дефектности структуры ПП. Если при ориентации аморфных полимеров имеет место увеличение их ст, то при вытяжке кристаллических полимеров из-за переориентации и частичного разрушения ламелей. и фибрилл возникает анизотропия укладки структурных элементов и изменение ст (иногда на 2—3 порядка). При использовании полимерных материалов в качестве диэлектриков стремятся к максимальному уменьшению их ст. Для достижения этого полимеры должны содержать минимальное количество ионогенных примесей, их е должна быть по возможности минимальной, сшивание макромолекул должно приводить к повышению Тс и, наконец, они должны иметь (после кристаллизации или ориентации) оптимальную надмолекулярную структуру, которой бы соответствовала наименьшая для полимера данного химического состава и молекулярного строения о. [c.204]

    Различные виды влектрнческого пробоя диэлектриков ф. Электрический пробой полимеров [c.204]

    Теория электрического пробоя диэлектриков, развитая Фрели-хом, исходит из того, что в основе процесса лежит ударная ионизация электронами. Справедливость этого подтверждается сравнительно малым отличием электрической прочности весьма разных по-свойствам диэлектриков (в том числе аморфных и кристаллических полимеров). При значительном возрастании напряженности электрического поля ускоряемые им электроны передают избыточную-энергию связанным электронам, которые, интенсивно переходя в зону проводимости, взаимодействуют с атомами вещества, изменяя структуру твердого диэлектрика и вызывая развитие его электрического пробоя. Согласно теории электрического пробоя диэлектриков, напряженность поля, при которой происходит пробой, должна экспоненциально уменьшаться с повышением температуры диэлектрика  [c.206]


Смотреть страницы где упоминается термин Диэлектрики-полимеры: [c.422]    [c.72]    [c.159]    [c.303]    [c.238]    [c.245]    [c.353]    [c.440]    [c.232]   
Переработка полимеров (1965) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрики



© 2025 chem21.info Реклама на сайте