Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители для эластичных

    В большинстве случаев практического использования битумы смешивают с минеральными порошками различного типа. При добавлении минерального наполнителя увеличивается плотность получаемой массы, ее консистентность и, как следствие, возрастает прочность при напряжениях сдвига, возникаюш,их при практическом использовании. Кроме того, непрозрачные минеральные частицы предохраняют битум от разрушения под действием солнечного света и влаги. Волокнистые минеральные наполнители способствуют определенному возрастанию упругости и эластичности битумно-минеральной массы. К свойствам порошков, имеющим наибольшее значение и определяющим реологические свойства битумно-минеральной смеси, относятся размер частиц и распределение частиц по размерам, форма [c.147]


    Как известно, невулканизованная резиновая смесь представляет собой каучуковую эластичную матрицу, в которой более или менее равномерно распределены частицы сажи (рис. 1). Свойства резиновых смесей и вулканизатов сильно зависят от характера взаимодействия каучука с активным наполнителем, так как [c.72]

    Под действием света и тепла в присутствии кислорода воздуха полиэтилен окисляется (старение). При старении макромолекулы полиэтилена соединяются кислородными мостиками, что вызывает изменение его химического состава и структуры. Полиэтилен приобретает сетчатую структуру, теряет пластические свойства и эластичность. Пленка полиэтилена становится жесткой и хрупкой. Для предотвращения старения в полиэтилен вводят антиокислители (стабилизаторы) ароматические амины, фенолы и сернистые соединения. Добавляют и некоторое количество наполнителей (например, сажу), которые повышают отражающую способность полиэтилена по отношению к ультрафиолетовым лучам, атмосферостойкость. [c.138]

    Важным узлом конструкции понтона и плавающей крыши является затвор-уплотнение кольцевого пространства между стенкой резервуара и покрытием. Применяют затворы петлевые, мягкого типа и жесткого типа. Затворы мягкого типа состоят из внутренней тонкой эластичной оболочки с наполнителем и наружной защитной оболочки из резинотканевого износоустойчивого материала. Наполнителями могут быть керосин, пенополиуретан. [c.46]

    Резиновая смесь включает до 15-20 ингредиентов. Это каучук, вулканизирующие вещества, ускорители и активаторы вулканизации, замедлители подвулканизации, активные и неактивные наполнители, объемные и поверхностные модификаторы, пластификаторы, противостарители и другие. Процесс перехода пластичной резиновой смеси в эластичную резину называется вулканизацией. Вулканизация представляет собой процесс поперечного "сшивания" линейных макромолекул в редкосетчатую стрз ктуру. Вулканизированную резиновую смесь называют вулканизатом или резиной. Каждой группе резин присущи специфические свойства, обусловленные каучуком и другими ингредиентами. [c.7]

    Коэффициент линейного расширения покрытия в 14 раз выше коэффициента линейного расширения металла. При покрытии полиэтиленом выпуклых поверхностей металлов разница в коэффициенте линейного расширения приводит к повышению адгезии при покрытии полиэтиленом вогнутых поверхностей возникают напряжения, направленные на отрыв покрытий, поэтому полиэтилен наносят на прослойки полиэтилена с наполнителями или же на эластичные грунтовочные лакокрасочные покрытия. [c.423]


    Приклеивание. При монтажных работах, преимуш.ествеяно при монтаже навесной бескорпусной элементной базы на подложках микроузлов, применяют пастообразные клеи для фиксации. Особенностью является требование легкого разрушения клеевого шва для удаления элемента при ремонте без повреждения токопроводящего рисунка контактных площадок на подложке и соседних элементов. Примером является клей ВК-9, который представляет собой композицию из эпоксидной смолы ЭД-5, низкомолекулярной полиамидной смолы ПО-300, кремнийорганической каталитической смеси АДЭ-Зт-А1М и наполнителя, например асбеста. Теплопроводность клея варьируется в зависимости от типа и количества наполнителя. Эластичность клея позволяет при необходимости легко снимать элементы. Клей ВК-9 легко воспроизводим, не разрушает покрытия элементов, работает в условиях от —60° С до - -200°С. [c.171]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]

    Основным компонентом клеев являются эпоксидные смолы ЭД-16, ЭД-20, ЭД-40, которые принимаются за 100% (по массе). Пластификатором (10—16% от массы) чаще всего служит дибутилфталат, придающий клею эластичность. Наполнители повышают механическую прочность клея и улучшают его сцепляемость с основным металлом. Для ремонта стальных и чугунных деталей в качестве наполнителя может использоваться железный порошок (20—60%), а при заделке больших трещин и пробоин — стеклоткань толщиной 0,1—0,3 мм. Отвердители (полиэтиленполиамин, гексаметилендиамин, фталевый и малеиновый ангидриды) вводятся в клей в количестве 7—16% от массы. [c.187]

    Весьма интересно сопоставить свойства простых сополимеров бутадиена и акрилонитрила (бутадиен- нитрильные каучуки СКН) и привитого сополимера, полученного на основе тех же компонентов и при одинаковом соотношении их в макромолекулах обоих сополимеров. Привитые сополимеры полибутадиена и акрилонитрила после вулканизации, как и вулканизаты каучука СКН, превосходят вулканизаты натурального каучука или полибутадиена по теплостойкости и атмосферостойкости. Привитой сополимер отличается большей прочностью и эластичностью по сравнению с простым сополимером бутадиена и акрилонитрила. Без введения усиливающего наполнителя предел прочности при растяжении вулканизатов привитого сополимера может достигать 174 кг см , относительное удлинение—765%, предел прочности при растяжении вулканизатов простого сополимера [c.540]

    Фторопласт-4 — эластичный материал, обладающий незначительной упругостью. При применении смеси фторопласта-4 с различными наполнителями эластичность фторопласта-4 уменьшается, но упругость не увеличивается. Для получения эффективного уплотнения фторопластовые поршневые кольца должны работать в паре с металлическими распорными пружинами. [c.115]

    Эта формула справедлива в тех случаях, когда частицы твердых наполнителей способствуют снижению деформации связующего, адсорбированного на поверхности этих частиц. Такой эффект назван стеснением связующего [1, с. 13]. Однако эффект стеснения исчезает, если соотношение между модулями упругости компонентов изменяется на обратное. Наполнители в таких композициях получили название эластификаторов. К ним относится, например [61 62 63. с. 306], бутадиен-нитрильный каучук, вводимый в количестве 5—15 объемн.% в ударопрочные пластики. Распределяясь в виде мелких сферических включений (рис. 1.12, а), низкомодульный наполнитель эластично деформируется под действием внешней нагрузки (рис. 1.12, б), перераспределяет внутренние напряжения и тем самым локализует развитие трещин в стеклообразном связующем [64]. Таким образом, под, действием нагрузки в исследуемом образце развивается сетка мелких трещин. Однако сопротивление материала деформированию при нагружении остается высоким. При введении наполнителей с модулем упругости более низким, чем у связующего, механизм разрушения под нагрузкой принципиально иной, поэтому зависи- [c.25]

    Из данных табл. 12 видно, что в присутствии наполнителя эластичность покрытия в некоторых случаях снижается. [c.65]

    Чисто углеводородная структура диеновых полимеров одновременно с высокой эластичностью придает этим полимерам и их смесям с наполнителями, в том числе и с активными, низкую когезионную прочность и плохую адгезию к полярным поверхностям. Эти недостатки диеновых полимеров относятся прежде всего к синтетическому ч с-1,4-полиизопрену, от которого можно было [c.225]

    С другой стороны, уже сегодня наметился ряд областей применения, где оказывается целесообразным использование жидких углеводородных каучуков. Эти области определяются ценным комплексом свойств последних высокой морозостойкостью и эластичностью, хорошими диэлектрическими свойствами и влагостойкостью, совместимостью с каучуками общего назначения и стандартными наполнителями [94]. Последнее особенно важно для практического применения этих материалов. [c.454]


    Рекомендуется использование таких герметиков при строительстве взлетных дорожек аэродромов, плавательных бассейнов, в стыках шоссейных дорог, для ремонта лодок и др. [95, 96]. Уплотнения для бетона на основе этих каучуков с использованием в качестве наполнителя кремнезема сохраняют эластичность и высокую адгезию к бетону после длительной экспозиции при температурах от -1-26 до —73 °С. Покрытия трубопроводов изготовляют с применением в качестве наполнителя асфальта или каменноугольного пека. [c.454]

    Термическая стабильность в закрытой системе у силоксановых вулканизатов значительно ниже, чем на воздухе или в вакууме. Срок их службы в этих условиях неограничен лишь при 120°С. Уже при 150°С он сокращается до 2—3 мес, так как без доступа воздуха и без удаления паров воды, сорбированной наполнителем, происходит деструкция полисилоксана, приводящая к потере резиной прочности, твердости и эластичности и к повышению остаточной деформации [72, с. 131]. Эта особенность должна учитываться при конструировании уплотняющих узлов или толстостенных изделий из силоксановых резин. [c.493]

    Характер выгорания материалов в зажимном устройстве зависит от свойств и состава материала. Прокладки из ФПК сгорали полностью. Прокладки из паронита сохраняли форму и эластичность даже в случае прогорания при давлении кислорода 3,5 (35 ат), т. е. паронит в этих условиях оказывался способным лишь к передаче горения, очевидно, за счет частичного выгорания легко воспламеняющегося наполнителя (резины). [c.73]

    Резиновые материалы. Общее название резины дают материалам, представляющим собой сложную смесь веществ, основным компонентом среди которых является каучук. Каучук без каких-либо добавок — сырой каучук—в промышленной практике используется очень редко. Обычно его смешивают с различными веществами, имеющими определенное назначение, — вулканизаторами, наполнителями, пластификаторами, противоокислителями в результате этого получается сырая резиновая смесь. Резиновая смесь подвергается вулканизации, которая проводится одновременно с приданием ей формы будущего изделия. Характерным свойством резни является их высокая эластичность, обусловленная содержанием в них каучука. Эластические свойства резин проявляются в том, что онп подвергаются большим деформациям под действием небольших нагрузок и быстро самопроизвольно возвращаются к первоначальной форме после снятия нагрузки. [c.382]

    Равномерность распределения наполнителей в смесях является не только характеристикой технологических свойств получаемых композиций, но и тем показателем, от которого зависят эксплуатационные свойства изделий. В частности, улучшение качества смешения наполнителей оказывает благоприятное влияние на эластичность и снижение гистерезисных потерь, способствует повышению условной прочности вулканизатов. Равномерность распределения напол- [c.182]

    Вулканизацией каучука называется процесс, при котором в результате взаимодействия каучука с серой или другими веществами (или под действием радиации) образуется значительное число новых связей между цепями (цепи сщиваются ), что приводит к изменению его эластичности и приобретению им значительной жесткости. Резина представляет собой вулканизованный каучук и обычно содержит еще различные наполнители (сажу и др.), пластификатор [c.568]

    При использовании в качестве наполнителя эластичных синтетических волокон ползучесть органоволокнитов под нагрузкой резко возрастает. Так, эпоксилавсанотекстолит нагрузку 9,5 кгс/мм выдерживает в течение 500 ч, причем удлинение образца при этом [c.281]

    Вулканизаты наполненного модифицированного каучука СКИ-ЗМ характеризуются высокими значениями напряжения при растяжении и сопротивления разрыву (на уровне этих показателей для натурального каучука), более высокой эластичностью при 20 и 100 °С и меньшим теплообразованием. Наличие в полиизопрене полярных групп (галогена и гидроксильной) обеспечивает некоторое повышение прочности невулканизованных резиновых смесей и вулканизатов, но введение структурирующих низкомолекулярных веществ (например, диизоцианатов) значительно усиливает эффект модификации. Присутствие в полиизопрене сложноэфирных групп в количестве 1—2% (мол.) практически-не влияет на когезионную прочность невулканизованных сажевых смесей вследствие незначительного увеличения межмолекулярного взаимодействия и взаимодействия с наполнителем. В присутствии окисей и гидроокисей двухвалентных металлов, смеси на основе полиизопрена со сложноэфирными группами в жестких режимах смешения (140°С, из-за трудности омыления) обнаруживают увеличение когезионной прочности, при этом возможно образование бессерных солевых вулканизатов с сопротивлением разрыву около 20 МПа. [c.232]

    Наличие в жидких каучуках разнообразных функциональных групп позволяет проводить взаимодействие их с изоцианатами, аминами, эпоксидными и акрилатными смолами и другими соединениями при этом получают материалы с широким диапазоном свойств —от эластомеров до эластичных пластиков. Кроме того, поскольку жидкие каучуки по природе своей цепи аналогичны обычным высокомолекулярным каучукам, возможно их усиление сажей и другими минеральными наполнителями, а также наполне- [c.411]

    Таких эластичных полимеров акриловых и метакриловых кислот известно довольно много под названием хайкары разных марок. Их латексы с наполнителями и вулр анизаторами легко превращаются в каучукоподобные материалы, инертные к маслам при 150° и обладающие высокой термо- и озоностойкостью. [c.634]

    Применение менее активных саж в качестве наполнителя позволяет получать резиновые смеси (УНС) с хорошими пластично-вязкими свойствами, что обеспечивает лучшие условия и.к обрабатываемости на различных стадиях изготовления резины (шприцуемость, каландруемость) и повышеппую эластичность конечного продукта. [c.114]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частнц дисперсной фазы. Чем анизо-метричнее форма частнц, тем при меньшей их концентрации образуется пространственная структура. Особенно эффективны в этом отношении волокнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на такой материал принимает на себя пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит кроме того, в качестве амортизатора. Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители увеличивают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременному разрушению материала. Если в бетонах внутренние наиряжения понижают с помощью вибрации прн твердении или добавлением ПАВ, то у металлов это достигается введением специальных модификаторов (обычно поверхностно-активных), в том числе гетерофазных включений. [c.393]

    Технологи, занимающиеся эластомерами и битумом, обычно согласны с тем, что действие каучуков на битумные материалы — явление скорее физическое, нежели химическое. Для достижения эффективного действия необходимо, чтобы каучуки были хорошо диспергированы в битумном материале, однако частицы не обязательно должны иметь коллоидные размеры. Нужно, чтобы частицы эластомера набухали в битумном материале, но не слишком сильно. Если эластомер очень стоек к набуханию, значит, он по существу инертен. Действительно, если ввести достаточное количество ненабухающего эластомера, то смесь может стать каучукоподобной, но только за счет того, что каучук служит составной частью или наполнителем. Наиболее пригодны эластомеры, которые набухают, но остаются диспергированными в битумной фазе. С другой стороны, каучуки, растворимые в битумном материале, также не являются эффективными модификаторами. При их введении в достаточном количестве вязкость смеси повышается (как у резинового клея), но она не приобретает таких свойств, как эластичность и жесткость. Неэффективны также деполимеризующиеся каучуки. Они не только переходят в раствор в битуме, но низкомолекулярные продукты их [c.229]

    Наиболее рациональным путем получения эластомерных материалов с заданными магнитными свойствами является создание композиционных материалов, состоящих из каучуков и различных наполнителей, в том числе ферромагнитных. Такие материалы могут сочетать высокоэластические свойства, присущие эластомерам, с магнитными свойствами наполнителей. В качестве наполнителей используют порошки из ферромагнитных, ферримагнитных материалов и редкоземельных элементов. Такие наполнители, как и любые ферромагнетики, по своим магнитным свойсгвам разделяют на магнитотвердые и магнитомягкие. В соответствии с тем, какие наполнители использованы при их изготовлении, все эластичные магнитные материалы также можно разделить на два класса магнитомягкие и магнитотвердые резины. Особое внимание при использовании ферромагнитных наполнителей должно быть обращено на их удельную поверхность (или размер частиц), так как уровень магнитных свойств композитного материала существенно зависит от этого показателя. [c.75]

    Предложены методы отверждения отработанных масел. Получаемые продукты в зависимости от способа приготовления могут быть использованы в самых различных областях. Для получения покрытий, наполнителей и изоляционных материалов масло смешивают с поливинилхлоридом и пластификатором (диоктилфта-латом) при необходимости добавляют замедлитель горения трикрезилфосфат и стабилизатор. Смесь гомогенизируют при нагревании с последующим охлаждением. Полученная масса эластична и хорошо формуется. Запатентован ряд отвердителей отработанных нефтяных масел. Как правило, это композиции веществ с различными функциями дибромтетрафторэтан, низкомолекулярный полифторхлорэтилен, водные растворы щелочей, бикарбонаты натрия и калия, соли фосфорных кислот, воски, высшие жирные кислоты, мыла, сложные ароматические галогенсодержащие продукты. [c.314]

    Высокополимерные соединения, пригодные для изготовления эластичных и термостабильных резин, получают преимущественно поликонденсацней диметилсиландиола, тщательно очищенного от различных примесей (чтобы предотвратить образование циклических соединений). Полученный полимер смешивают с наполнителем (окись титана или кремния), повышающим механическую прочность полимера, и вводятвсмесь перекись (например перекись бензоила), при помощи которой производится последующая вулканизация полисилоксана, т. е. образование полимера сетчатой структуры. Вулканизация начинается в процессе формования изделия и заканчивается прогреванием изделий в термошкафах при 160—200°. [c.484]

    В 1950 г. состоялась Всесоюзная конференция по коллоидной химии, на которой большая часть докладов была посвящена проблеме структурно-механических свойств дисперсных систем. А. С. Колбанов-ская и П. А. Ребиндер определили мгновенный модуль упругости, модуль эластичности, истинную вязкость и вязкость эластичной деформации различных структур. Вместе с О. И. Лукьяновой они исследовали влияние добавок наполнителей и поверхностно-активных веществ на деформационные свойства растворов каучуков. Б, А, Догад-кин, М. И. Резниковский изучили роль межмолекулярных сил в механизме высокоэластичной деформации. Несколько работ по этому вопросу опубликовал Г. М. Бартенев. В 1950 г. Институт физической химии АН СССР выпустил сборник Новые методы физико-химических исследований поверхностных явлений , содержащий статью Б. В. Дерягина, П. А. Ребиндера Новые методы характеристики упруго-пластично-вязких свойств структурированных дисперсных систем и растворов высокополимеров . М. П. Воларович и М. Ф. Никитина исследовали вязкость дорожных битумов. Большое значение для развития физико-химической механики имел выход в свет статьи Н. В. Михайлова и П. А. Ребиндера Методы изучения структурно-механических свойств дисперсных систем . (Колл, ж., 1955, 17, 2, 105). [c.9]

    В связи с высокой пластичностью, термической неустойчивостьк> натуральные и синтетические каучуки не используются непосредственно для технических целей. Для придания каучукам прочностных свойств, эластичности и термостойкости их подвергают обработке серой или ее соединениями (например, хлористой серой S2 I2) — вулканизируют. Процесс вулканизации был открыт в 1839 г. Генкоком и Гудьиром. Это довольно сложный химический и физико-химический процесс, сущность которого заключается в образовании новых поперечных (мостиковых) связей между полимерными цепями (см. с. 407). В результате такой обработки каучук превращается в технический продукт — резину, которая содержит до. 5% серы. Кроме серы в резину входят различные наполнители, пластификаторы, красители, антиоксиданты и др. Вулканизированный каучук, содержащий по массе свыше 30% серы, называется эбонитом. [c.83]

    Некоторые полиэфирные полимеры склеивают стеклопластики с асбестоцементными и древесноволокнистыми плитами, сотоплас-тами, а также друг с другом. Они используются при изготовлении некоторых шпаклевочных масс, применяемых для гидро- и пароизо-ляции бетона и наливных полов, приобретающих после отверждения высокую ударную прочность и стойкость к истиранию, действию воды и агрессивных сред. При добавлении паст некоторых органических красителей в диоктилфталате можно получать окрашенные монолитные полы. Иногда при изготовлении наливных полов используют полиэфирно-кумароновые мастичные составы с минеральными наполнителями. Сочетание полиэфирных эластичных полимеров с хрупкими кумароновыми полимерами позволяет создавать покрытие полов с высокими эксплутационными свойствами. Стеклоткань или стеклянное волокно, пропитанное растворами полиэфиров в стироле, превращается в стеклопласты, не уступающие по прочности стали, но со значительно меньшей плотностью. Из такого материала можно получать различные санитарно-технические изделия повышенной прочности (ванны, трубы и т. д.). [c.422]

    Жесткие полистирольные участки разных макромолекул образуют плотно упакованные структуры в матрице эластичных полибу-тадиеновых блоков (обычное молярное соотношение бутадиен — стирол в сополимере 7 3). Эти жесткие участки, называемые доменами полистирола, существенно упрочняют всю систему, играя роль активного наполнителя. Схематично надмолекулярная структура такого блок-сополимера показана на рис. 4.3, а. [c.65]

    Эластичность полимера снижают либо повышением температуры переработки, либо снижением молекулярной массы, либо рецептурными факторами, например введением неэластичного (порошок мела) наполнителя, который снижает эластичность системы в целом. Температуру текучести можно также существенно понизить введением пластификатора. Пластифицированный 1юлимер — это [c.170]


Смотреть страницы где упоминается термин Наполнители для эластичных: [c.182]    [c.161]    [c.450]    [c.548]    [c.439]    [c.74]    [c.476]    [c.113]    [c.189]    [c.148]    [c.212]    [c.46]    [c.338]    [c.219]   
Эластичные магнитные материалы (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители

Эластичность



© 2025 chem21.info Реклама на сайте