Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сила тока измерение компенсационным методо

    Принцип компенсационного метода измерения э. д. с. гальванических элементов. Электродвижущая сила гальванического элемента может быть измерена компенсационным методом. Непосредственное измерение э. д. с. с помощью чувствительного вольтметра имеет существенные недостатки. Действительно, если обозначим через внутреннее сопротивление элемента, через —сопротивление вольтметра, через Е—истинную электродвижущую силу элемента и через /—силу тока в цепи, то согласно закону Ома  [c.288]


    Для измерения электродвижущих сил пользуются компенсационным методом, преимущество которого состоит в том, что он позволяет измерять э. д. с. элемента, когда в цепи отсутствует ток ( = 0). На рис. 40 приведена принципиальная схема компенсационной у ста и ов к и. [c.153]

    Электродвижущая сила любого гальванического элемента может быть измерена либо включением в цепь чувствительного вольтметра, либо компенсационным методом. В первом случае через цепь обязательно протекает электрический ток, во втором — э.д.с. измеряется при отсутствии тока. В практике методом непосредственного измерения э.д.с. не пользуются. И вот почему. [c.245]

    Прибор состоит из следующих основных узлов потенциометра постоянного тока типа ПП класса 0,2, предназначенного для непосредственных измерений компенсационным методом электродвижущих сил и напряжений [c.84]

    При реакциях осаждений и комплексообразования индикаторным электродом служит электрод, потенциал которого является функцией активности ионов, участвующих в реакциях осаждения или комплексообразования. Например, серебряный электрод используется для определения серебра, а также ионов, дающих с ионами Ад+ малорастворимые соли или прочные комплексные соединения. В качестве электродов сравнения используют каломельный или хлоридсеребряный электрод. Последний, если это допустимо, погружают непосредственно в исследуемый раствор или соединяют при помощи электролитического ключа с титруемым раствором. Измерение возникающей э. д. с. можно проводить по компенсационному и некомпенсационному методам (измерение потенциала электрода, измерение силы тока). [c.314]

    Разница между э. д. с. и напряжением обусловлена омическим падением напряжения внутри элемента при прохождении тока и другими эффектами. Поэтому измерение э. д. с. обычно проводят компенсационным методом, при котором сила тока, протекающего через элемент, близка к нулю. Для этого к элементу подводят э. д. с. с противоположным знаком от внешнего источника тока, значение которой можно регулировать тем или иным способом. В измерительную цепь включаются также гальванометр для регистрации тока и вольтметр для измерения напряжения. В момент, когда выходное напряжение внешнего источника тока равно э. д. с. гальванического элемента (момент компенсации э. д. с.), сила тока в цепи равна нулю (стрелка гальванометра не отклоняется). Измеренное в этот момент вольтметром напряжение на клеммах гальванического элемента равно его э. д. с. Более простой и менее точный метод измерения э.д. с. заключается в прямом измерении напряжения на клеммах гальванического элемента вольтметром, имеющим высокое омическое сопротивление (высокоомный вольтметр). Вследствие высокого омического сопротивления вольтметра мала сила тока, протекающего через элемент, поэтому невелика разница между э. д. с. и напряжением элемента.  [c.189]


    Измерители тока. Для измерения поляризационных токов пользуются микроамперметрами. Измерители тока включают последовательно в цепь их внутреннее сопротивление небольшое и мало сказывается на общей силе тока. Очень чувствительным и точным методом определения величины силы тока в какой-либо замкнутой цепи является измерение падения напряжения ( ) через прецизионное постоянное известное сопротивление (/ ), включенное последовательно в цепь. Величину V = Я измеряют компенсационным методом с помощью потенциометра. Зная R и V, можно вычислить г с большой точностью. [c.55]

    Сопротивления. Для измерения силы тока в цепи компенсационным методом пользуются набором высокопрецизионных сопротивлений. [c.55]

    Важнейшее место в экспериментальной электрохимии занимает измерение электродвижущих сил. Для измере- > ния э. д. с. электрохимических систем обычно пользуются компенсационным методом, принцип которого состоит в уравновешивании определяемой э. д. с. элемента равным по величине падением напряжения 1г на реохорде или в потенциометре, питаемом от внешнего источника тока (рис. 25). Компенсирующее падение напряжения обычно создается с помощью хорошо заряженного аккумулятора. При этом сопротивление любого отрезка проволоки реохорда пропорционально его длине, а общее сопротивление проволоки равно Кн. В простейшем случае изучаемый гальванический элемент X включается навстречу аккумулятору А (плюс против плюса, минус против минуса). Перемещением движка по реохорду подбирают такое положение его, при котором э.д.с. эле- [c.173]

    При измерении э. д. с. гальванических элементов необходимо, чтобы химическая реакция в гальваническом элементе протекала обратимо, что возможно при небольшом значении силы протекающего тока. Этому требованию удовлетворяет компенсационный метод измерения э. д. с. (метод Поггендорфа), в котором при приближении к компенсации через гальванический элемент проходят токи с силой не более 10 А. [c.554]

    Измерение ЭДС. Для измерения равновесной (обратимой) ЭДС электрохимического элемента необходимо, чтобы процесс совершался бесконечно медленно, т. е. чтобы элемент работал при бесконечно малой силе тока. Это условие выполняется в компенсационном методе измерения, который основан на том, что элемент включается против внешней разности потенциалов, и последняя подбирается так, чтобы ток в цепи отсутствовал. В этом случае внешняя разность потенциалов равна ЭДС изучаемого элемента. Пользуясь компенсационным методом (методом Поггендорфа), можно непосредственно измерить значение равновесной ЭДС элемента. [c.242]

    ЭДС гальванического элемента представляет собой равновесную величину. Поэтому измерение ЭДС необходимо проводить без нарушения электродных равновесий. В равновесном состоянии через поверхность соприкосновения фаз электродов суммарный ток равен нулю. Следовательно, при измерении ЭДС необходимо обеспечить отсутствие тока через гальванический элемент. Этого можно добиться путем компенсации ЭДС противоположно направленным падением напряжения (компенсационный метод). Достоверные результаты получают также с помощью некомпенсационного метода, если сила тока ничтожно мала. [c.268]

    Наиболее точным методом измерения электродвижущих сил (э. д. с.) является компенсационный метод, основанный на том, что падение напряжения, обусловленное исследуемым элементом на проводнике с переменным сопротивлением, компенсируется направленной противоположно электродвижущей силой источника тока с известным напряжением. В момент компенсации (равенства обеих э. д. с.) в проводнике не проходит ток. [c.377]

    Термоэлектродвижущую силу обычно измеряют стрелочным вольтметром хорошего класса точности, по возможности с очень высоким внутренним сопротивлением. Благодаря высокому внутреннему сопротивлению сила тока будет весьма мала и падение напряжения в термопаре и подводящих проводах пренебрежимо мало. При очень точных работах измерения проводят компенсационным методом. [c.51]

    Кроме того, эти потери можно свести к минимуму, применяя компенсационный метод , при котором потери тепла компенсируются электрическим нагревом термопары. Термопара поглощает тепло от пламени, если ее температура ниже температуры пламени, и отдает тепло пламени, если она нагрета до более высокой температуры. Это приводит к отклонению измеренной температуры, определяемой по кривой тепло—сила тока, и полученной при градуировке термопары (обычно в вакууме). Точка пересечения двух кривых (полученных при нагреве термопары в вакууме и пламени) соответствует отсутствию конвективного теплообмена между термопарой и газом, что возможно только при равенстве их температур. Этот принцип может быть применен как к термометрам сопротивления, так и к термопарам. Основное затруднение заключается в создании идентичности условий лучистого теплообмена проволочки с окружающими телами при градуировке и в пламени. Различие этих условий, естественно возникающее в процессе экспериментов, приводит к погрешностям определения температуры газа, часто весьма существенным. [c.38]


    Направление тока определяется соотношением потенциалов двух электродов. Разность потенциалов или электродвижущая сила Е — мера движущей силы реакции. Есл э. д. с. обратимого элемента сбалансирована извне эквивалентной и противоположно направленной э. д. с., то никаких химических изменений в элементе происходить не будет. Однако, если внешнюю э.д.с. затем уменьшить на очень малую величину, от элемента будет течь небольшой ток и пойдет реакция. Если, наоборот, приложенную извне э. д. с. увеличить на очень малую величину, ток начинает течь в противоположном направлении и химическая реакция будет обращена. Измерение э. д. с. гальванического элемента компенсационным методом, когда э. д. с., взятая от потенциометра, сбалансирована почти точно э. д. с. самого элемента, максимально приближается к условиям термодинамической обратимости, поэтому к таким системам могут быть приложимы принципы термодинамического равновесия. [c.12]

    Чтобы предупредить возникновение поляризации элемента, измерять его э. д. с. следует в тот момент, когда сила тока в системе равна нулю. Такому условию отвечает компенсационный метод измерения э. д. с., который может быть осуществлен с помощью различных приборов, а именно а) реохорда и нормального кадмиевого элемента б) двух движковых реостатов и вольтметра в) двух магазинов сопротивлений и нормального кадмиевого элемента, г) потенциометра. [c.30]

    При записи интегральных полярограмм с сопротивления <кя на ячейку подается поляризующее напряжение, плавно изменяющееся в пределах одного вольта. Запись полярограммы начинается с любого заранее заданного напряжения в диапазоне от +0,5 до —2 в. Установка этого напряжения производится переключателями BJ, В2). Измерение силы тока ячейки производится компенсационным методом путем сравнения падения напряжения на одном из сопротивлений с падением напряжения на компенсационном сопротивлении Да. При изменении тока ячейки между точками вид появляется разность напряжений, которая подается на усилитель переменного тока. Усиленный сигнал управляет следящим двигателем (на схеме не показан), перемещающим дви- [c.23]

    Для получения высококачественных полярограмм необходимо обеспечить такие условия, при которых линейность изменения напряжения на ячейке не нарушалась бы при возможных колебаниях силы тока. Решение этой задачи может быть выполнено путем введения компенсации дополнительных падений напряжения на сопротивлениях измерительной цепи и ячейки. В частности, в рассмотренной выше схеме прибора ПЭ-ЗГ2 применен компенсационный метод измерения, обеспечивающий независимость напряжения на ячейке от величины последовательно с ней включенных сопротивлений Для устранения влияния сопротивления раствора в измерительную схему тем или иным способом вводится дополнительное напряжение, равное по величине, но противоположное по знаку падению напряжения в растворе [Л. 10—12]. [c.25]

    Наиболее простым и распространенным методом измерения электродных потенциалов является компенсационный метод. Измерения этим методом не представляют затруднений по указанному выше режиму. При необходимости фиксировать начальные относительно быстрые изменения потенциалов обычную методику приходится усложнять [254]. Компенсационный метод характерен тем, что измерение электродвижущих сил элементов может быть произведено в условиях, когда ток через них не проходит [255, 256]. Его принцип состоит в том, что электродвижущая сила элемента, одним электродом которого является металл [c.153]

    Сущность компенсационного метода измерения состоит в уравновешивании (компенсации) неизвестной электродвижущей силы термопары равной ей разностью потенциалов постороннего источника тока, но противоположной по знаку. Такие приборы называются потенциометрами, или компенса- 1 4 торами. [c.133]

    На рис. 35 показана схема измерения термоэлектродвижущей силы термопар компенсационным методом. Ток строго определенной величины от источника тока Б обтекает цепь, состоящую из последовательно включенных манганиновых сопротивлений - нэ. - рИ -/ доб- Сопротивление Яр, называемое реохордом, изготовляют из однородной манганиновой проволоки [c.133]

    Ток в цепи устанавливают (нормализуют) компенсационным методом при помощи источника с эталонной электродвижущей силой. В качестве такого источника служит нормальный элемент НЭ. Ключ д замыкают с контактом 2 при этом нормальный элемент включается в цепь, состоящую из постоянного сопротивления 7 эИ нуль-гальванометра ЯЯ. Если стрелка нуль-гальванометра показывает отсутствие тока, то разность потенциалов батареи между точками Л и 3 равна электродвижущей силе нормального элемента. При наличии тока в цепи гальванометра движок реостата Яб передвигают до тех пор, пока стрелка нуль-прибора ЯЯ не покажет отсутствие тока. Величину сопротивления / Н9 подбирают такой, чтобы при расчетном токе / в цепи потенциометра разность потенциалов между точками 3 и Л равнялась электродвижущей силе нормального элемента. После установления нормальной величины тока в цепи батареи можно приступить к измерению термоэлектродвижущей силы термопары ключ К замыкают с контактом 1 при этом нуль-прибор подключается к рабочей цепи потенциометра, а нормальный элемент отключается и далее в работе схемы потенциометра, при измерении э. д. с. термопары, участия не принимает. [c.134]

    Измерение электродвижущей силы элемент. С известной степенью точности э. д. с. элемента можно непосредственно измерить вольтметром, имеющим большое внутреннее сопротивление. Сила тока, проходящего через цепь, в этом случае мала, и внутренними потерями в элементе можно пренебречь. При необходимости более точного измерения следует пользоваться компенсационным методом. [c.31]

    Наиболее точным и целесообразным методом измерения является так называемый компенсационный метод, с помощью которого электродвижущие силы элементов могут быть измерены в условиях, когда ток через них не проходит. [c.197]

    Указанные недостатки компенсационного метода заставляют нередко прибегать к измерению э. д. с. при помощи ламповогО электрометра, представляющего собой ламповый вольтметр постоянного тока. Измеряемая э. д. с. подается на вход лампы, вызывая изменение потенциала сетки и, следовательно, силы анодного тока. Чувствительный гальванометр, регистрирующий это изменение, позволяет прочесть величину поданной э. д. с. Высокое входное сопротивление лампового электрометра, достигающее величины 10 °—10 ом, обеспечивает протекание весьма малого тока в элементе. Оно же позволяет измерять э. д. с. элементов с высоким внутренним сопротивлением. Применение лампового электрометра удобно потому, что позволяет непосредственно по шкале прибора прочесть величину э. д. с., не прибегая к компенсации. Однако точность отсчета при этом, конечно, меньше, чем достигаемая при помощи обычного потенциометра. [c.236]

    Большим преимуществом метода компенсации является то, что сопротивление подводящих проводов термометра не оказывает никакого влияния на результат измерения сопротивления чувствительного элемента. В самом деле, в тот момент, когда гальванометр (нуль-индикатор компенсационной схемы) не показывает отклонения, сила тока в потенциометрических подводящих проводах равна нулю. Таким образом, напряжение, измеряемое потенциометром, строго равно напряжению на концах чувствительного элемента термометра. [c.95]

    Указанных недостатков лишены косвенные методы определения чисел переноса, основанные на измерении электродвижущих сил различных гальванических ячеек, в которых в качестве электролитов используются образцы исследуемых твердых тел. Обычно э. д. с. измеряется компенсационным методом, когда ток через ячейку не проходит и, следовательно, состояние образцов наиболее близко к равновесному. Несомненными достоинствами методов, основанных на измерении э. д. с., являются высокая точность и воспроизводимость измерений и простота экспериментального оформления. [c.207]

    Усилители постоянного или переменного тока, охваченные глубокой (практически близкой к 100%) отрицательной обратной связью, целесообразно выделить в отдельную группу в силу присущих им специфических особенностей. Такие усилители сочетают в себе положительные- свойства компенсационных методов измерения поэтому в качестве регистрирующего прибора можно применять магнито-электрические приборы с непосредственным отсчетом. [c.130]

    Ячейку питают пониженным напряжением (10—20 мв) промышленной частоты. Последовательно с ячейкой включают сопротивление ограничивающее ток, протекающий через раствор, и эталонное сопротивление по падению напряжения на котором определяют силу тока, протекающего через раствор. Измерение осуществляют компенсационным методом. При помощи переключателя П к компенсатору подключают либо напряжение, [c.242]

    Мерой давления служит величина тока, необходимая для поддерживания пороговой температуры свечения нити. Силу тока целесообразно измерять компенсационным методом, так как при этом можно исключить ток холостого хода и перенести нулевую точку прибора в требуемую область измерений. [c.398]

    Наибольшей точности можно достичь, применяя компенсационный метод измерения напряжения. Он заключается в сравнении измеряемой разности потенциалов с падением напряжения на эталонном сопротивлении. Величина последнего должна быть точно известна. Компенсационным методом можно измерять не только напряжение, но и силу тока и сопротивление. [c.120]

    Измерение электродвижущих сил. Нормальный элемент. При работе гальванического элемента его э. д. с. не сохраняет строго постоянного значения вследствие изменения концентрации растворов и других причин. Поэтому точные измерения 3. д. с. должны производиться при минимальном прохождении тока. Этому отвечает компенсационный метод измерения э. д. с. (метод Поггендор-фа), дающий возможность определить э. д. с. элемента путем измерения разности потенциалов в условиях обратимой работы элемента. Принципиальная схема установки для компенсационного измерения э. д. с. показана на рис. 152. [c.435]

    Метод поляризационных кривых. Для уяснения этого метода разберем простейший случай разряда водородного иона на платиновом катоде в растворе серной кислоты. Будем постепенно увеличивать напряжение злектролизующего тока на электродах, замечая при этом изменения потенциала на катоде, а также силу тока, проходящего через раствор серной кислоты. Измерения напряжения и силы тока ведут с помощью милливольтметра и миллиамперметра, а определение потенциала катода — компенсационным способом. На абсциссе откладывают величины потенциала е, а на ординате — соответствующие силы тока I. Кривая на рис. 94 показывает, что вначале, при постепенном увеличении силы тока, величина е растет довольно быстро и кривая проходит вблизи абсциссы и лишь по достижении некоторого предела дает определенный перегиб, резко поднимаясь вверх. Потенциал электрода, соответствующий началу подъема силы тока, называют потенциалом разряда. Очевидно, что такой резкий подъем силы тока возможен только тогда, когда приложенное внешнее напряжение хотя бы на небольшую величину превышает электродвижущую силу гальванической пары, образующейся в результате электролиза. В рассматриваемом случае такой парой будет платиновый катод, насыщенный водородом, т. е. [c.263]

    Степень поляризации зависит от характера анодных и катодных участков, состава коррозио1шой среды и плотности коррозионного тока. Чем бо,1ьше наклон поляризационных кривых, тем сильнее поляризуется электрод и тем сильнее тормозится анодный или катодный процесс. Для снятия поляризационных кривых могут быть использованы разные схемы установок. Схема любой установки для снятия поляризационных кривых гальваностатическим способом подобна схеме для измерения электродных потенциалов компенсационным методом и отличается от нее по существу только тем, что она предусматривает подвод постоянного тока к исследуемому электроду и измерение его величины, т. е. включает источник постоянного тока, приборы для измерения силы тока и регулирования его величины и вспомогательный поляризующий электрод. Схема установки для снятия поляризационных кривых приведена на рис. 222. [c.342]

    Потенциометр постоянного тока высокоомный ППТВ-1. Потенциометр ППТВ-1 (рис. 29) представляет собой лабораторный переносный прибор, служащий для измерения электродвижущих сил и напряжений постоянного тока компенсационным методом. При этом измеряемая э. д. с. уравновешивается падением напряжения на группе точных сопротивлений, по которым протекает ток строго определенной величиньг. Прибор дает возможность также измерять сопротивления и силу тока при наличии образцовых катушек сопротивления. [c.46]

    Электродвижущую силу гальванических элемент тов измеряют компенсационным методом. Схема ус- тановки для измерения электродвижущей силы компенсационным методом дана на рис. 50. Источник постоянного тока, обычно электрический аккумулятор, подключают к концам реохорда ab. Элемент, эдс которого измеряется, подключают к реохорду в точке а и через гальванометр к подвижному контакту с. Аккумулятор и исследуемый элемент включают таким образом, чтобы их токи протекали навстречу друг другу, т. е. их электродвижущие силы Егкк и компенсируются. Перемещая подвижной контакт с реохорда ab находят такое его положение, при котором гальванометр покажет отсутствие тока. Это оз- начает, что падение потенциала на участке ас точно равно электродвижущей силе исследуемого элемен-. та. Тогда можно записать следующее отношение ExI aKK — ас[аЬ. [c.139]

    Потенциометры. Потенциометрическая усхановка состоит из индикаторного электрода и элёктрода сравнения, погруженных в анализируемый раствор. Потенциал индикаторного электрода финд такой гальванической ячейки измеряют относительно стандартного электрода фст- Если в цепи отсутствует ток, поляризующий электроды, разность потенциалов Аф зависит только от изменения потенциала финд и отличается от него на постоянную величину фс . В практике используют два способа измерения разности потенциалов двух электродов компенсационный и некомпенсационный. Наиболее распространенный и надежный способ измерения э. д. с. потенциометрической ячейки — компенсационный метод. Он основан-на компенсации двух противоположно направленных электродвижущих сил. На электроды ячейки налагают э. д. с внешнего источника постоянного тока, противоположно направленную э. д.,с. гальванической ячейки. При установившейся компенсации в цепи нет тока, э. д. с. ячейки и э. д. с. источника равны. В некомпенсационном методе э.д.с. гальванического элемента измеряют непосредственно гальванометром, последовательно с которым включают большое сопротивление и источник постоянного тока. Такая схема позволяет наблюдать изменение э.д.с. гальванического элемента по изменению силы тока в цепи. [c.121]

    При компенсационном методе измерения потенциалов не исключена возможность поляризации элемента или электрода и получения по этой причине искаженного значения потенциала. В процессе последовательного приближения к точке компенсации мы неизбежно замыкаем измеряемый элемент на чарть сопротивления потенциометра, при этом через измеряемый элемент протекает ток, который его поляризует. По этой причине для измерения электродвижущих сил гальванических элементов употребляются потенциометры с большим внутренним сопротивлением — 10 2 и выше на 1 тУ. Помимо этого, имеется вероятность поляризации элемента даже при достижении компенсации. Момент достижения компенсации устанавливается по отсутствию отклонения нульинструмента. Если в схеме при измерении взят нульинстру-мент с чувстительностью 1-10 А/деление, то тока силой в 10 А мы уже не обнаружим и будем считать, что достигнута полная компенсация. Рассмотрим, какая поляризация может возникнуть в результате протекания тока силою в 10 А. Возьмем элемент с одним практически не поляризующимся электродом (таковым при достаточных размерах [c.214]

    Полярограф предназначен для автоматической записи кривых сила тока — приложенное напряжение . Все полярогра-фы имеют самостоятельный хорошо стабилизированный источник постоянного напряжения, которое подается на реохорд. При движении контакта реохорда разность потенциалов, равномерно возрастающая или убывающая, подается на электрохимическую ячейку. Принимая во внимание, что небольшие изменения потенциала, приложенного к индикаторному электроду, резко влияют на характер и скорость электрохимического процесса, точному измерению потенциалов в полярографии уделяют большое внимание. Для этого обычно используется трехэлектродная ячейка, и потенциал индикаторного электрода имеряется по компенсационному нуль-методу с применением потенциометрического моста. Метод отличается высокой точностью, но недостатком его является длительность измерений и громоздкость установки. [c.161]

    Точнее всего емкость поверхности раздела металл — раствор можно определить по данным переменпоточных измерений импеданса компенсационным методом моста или измерений угла сдвига фаз. Сначала электрод поляризуется током постоянной силы или при постоянном потенциале до установления стационарного состоя- [c.413]

    Принцип компенсационного метода определения электродвижущей силы цепи. Так как не существует надежного и простого способа измерения потенциала отдельного электрода, то всегда его измеряют по отношению к другому стандартному электроду (стандартный полуэле-мент). При соединении обоих электродов создается цепь или элемент, э.д.с. которого можно измерить. Если концы цепи присоединить к гувствительному вольтметру, то нельзя ожидать точных результатов, так как через систему потечет ток от элемента. Этот ток вызовет химические реакции на обоих электродах и, вследствие возникающей поляризации, э.д.с. цепи будет меняться во время измерения. Поэтому обычно применяемым методом является метод Поггендорфа — Дю Буа Реймонда, в котором измеряемая э.д.с. компенсируется известной электродвижущей силой, направленной обратно. Когда неизвестная э.д.с. компенсирована, в цепи отсутствует ток, что можно установить каким-нибудь нулевым инструментом, подобным гальванометру. [c.104]

    Компенсационным методом можно измерять не только напряжение, но также силу тока и сопротивление. На рис. IV.3 приведена схема измерения силы тока. В цепь измеряемого тока включают эталонное сонротивленпе Падение напряжения на сонротивлении измеряют потенциометром и силу тока определяют по формуле [c.121]

    Ячейку питают пониженным напряженпем (10—20 мв) промышленной частоты. Последовательно с ячейкой включают сопротивление ограничивающее ток, протекаюший через ра -"вор, и эталонное сопротивление по паденпю напряжения на котором определяют силу тока, протекающего через раствор. Измерение осуществляют компенсационным методом. При помощи переключателя П к компенсатору подключают либо напряжение, падающее на эталонном сопротивлении i э, либо напряжение, падающее ва ячейке. [c.207]

    В последнее время получили распространение электронные самопишущие полярографы, изготовляемые, как правило, на базе самопишущих электронных потенциометров. Продвижение бумажной ленты синхронизировано в них с движением реохорда, задающего напряжение на ячейку силу поляризационного тока измеряют по падению напряжения на эталонном сопротивлении. Измерение напряжения производят компенсационным методом с помощью само-уравновешивающегося моста самопиш5 щего потенциометра. [c.298]


Смотреть страницы где упоминается термин Сила тока измерение компенсационным методо: [c.61]    [c.224]    [c.16]   
Современные электронные приборы и схемы в физико-химическом исследовании Издание 2 (1971) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение силы тока

Компенсационный метод измерения

Сила измерение



© 2025 chem21.info Реклама на сайте