Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть растворимость и растворяющая

    Растворимость нефти в воде при обычных температурах ничтожна, но при температуре больше 200°С резко возрастает. Жидкие УВ и гетероатомные соединения легче образуют в воде ми-целлярный раствор. Растворимость индивидуальных УВ повышается в ряду алканы-цикланы-арены-смолы. Растворимость УВ в воде снижается с ростом ее минерализации. Нефть хорошо растворяется в углеводородном природном газе. [c.18]


    Главная особенность мицеллярных растворов — способность к солюбилизации, т. е. к самопроизвольному растворению веществ, в обычных условиях нерастворимых в данном растворителе. Например, нефть становится растворимой в мицеллярной системе вода — ПАВ, хотя, обычно нефть не растворяется в воде и в истинном водном растворе ПАВ. [c.186]

    На растворимость газа влияет плотность нефти. В более тяжелых нефтях растворимость данного газа меньше, чем в легких. Это объясняется большим химическим сродством газов и легкой нефти. Жирные газы, содержащие более тяжелые углеводороды, лучше растворяются в нефти. Из всех неуглеводородных газов наибольшую растворимость в нефти имеет углекислый газ, а наименьшую — азот, углеводороды имеют растворимость среднюю между ними. Выделение из нефти растворенных в ней газов происходит в обратном поряд-46 [c.46]

    Растворимость газов. При анализах природных и промышленных газов постоянно приходится сталкиваться с явлениями растворения газа в жидкостях и с адсорбцией газов твердыми телами. В лабораторной практике чаще всего приходится иметь дело с растворением газов в нефти, бензинах, воде, некоторых щелочах, кислотах и солевых растворах. [c.235]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    Вопросу подбора для разных условий карбамидной депарафинизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов [40—46, 37—39, 31, 29]. В перечисленных работах можно найти дальнейшие по- дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками [38] указывается, в частности, что потребное количество активатора зависит от его природы (табл. 18). Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или метилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% [38]. Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. [c.145]


    Значительную стойкость природным нефтяным эмульсиям придает обычно присутствующий в нефти эмульгатор, который адсорбируется на поверхности диспергированных частиц. Эмульгаторами для нефтяных эмульсий являются коллоидные растворы смолы, асфальтены, мыла нафтеновых кислот, а также тонко диспергированные глины, мелкий песок, суспензии металлов и др. Они обладают способностью прилипать к поверхности раздела двух фаз) эмульсии, образуя защитную броню глобулы. Эмульгаторы, которые способствуют образованию эмульсии масла в виде глобул в дисперсионной среде —воде (гидрофильные эмульгаторы), представляют собой коллоидные растворы веществ, активных в воде, т. е. растворяющихся или разбухающих в ней (например, щелочные мыла, белковые вещества, желатин). Вещества, растворимые в маслах (например, смолы, известковые мыла, окисленные нефтепродукты), носят названия гидрофобных, или олеофильных эмульгаторов. В этой эмульсии вода содержится в виде глобул, взвешенных в дисперсионной среде — нефти. [c.11]

    Металлы, вообще говоря, при обыкновенной температуре растворяются слабо, но нри нагревании и с повышением температуры выкипания отдельных фракций нефти растворимость заметно растет. [c.74]

    При темтературах, близких к критической температуре пропана (96,8 °С), раство)римость составных частей масляного сырья уменьшается. Происходит это потому, что с приближением температуры раствора к области критического состояния данного растворителя резко снижается его плотность и, следовательно, резко увеличивается мольный объем. Эти же показатели для высокомолекулярных углеводородов сырья изменяются относительно мало. В результате уменьшаются силы притяжения между молекулами растворителя и углеводородов, что приводит к снижению растворимости. Зависимость выделения наиболее высокомолекулярных компонентов концентрата нефти из раствора в пропане от его плотности (рис. 22) прямолинейна при обычных температурных условиях процесса деасфальтизации. [c.79]

    Физико-химическая структура нефти определяется взаимной растворимостью ее компонентов. При температурах выше температуры плавления все компоненты нефтей полностью растворяются друг в друге. Ограниченная растворимость наступает лишь после снижения температуры нефти ниже температуры застывания части компонентов. Наиболее высокоплавкими компонентами нефтей являются асфальтены, температура застывания которых превышает 300 °С, поэтому только они при всех наблюдающихся на практике температурах нахождения нефтей являются ограниченно растворимыми компонентами. [c.19]

    Нефть легко растворяется в углекислом газе, а также в метане, если к нему добавлено некоторое количество пентана или гексана. В раствор в сжатом газе может перейти вся нефть, за исключением асфальтенов, не растворимых даже в легких углеводородах. Обратная конденсация нефти в газе рассматривается как причина образования так называемых газоконденсатных залежей, а также как причина перемещения, или миграции, нефти в области с меньшим давлением, в которых происходит разделение смеси на газ и жидкую нефть. [c.47]

    На технико-экономические показатели ЭЛОУ влияют также интенсивность и продолжительность перемешивания эмульсионной нефти с раствором деэмульгаторов. Так, для деэмульгаторов с малой поверхностной активностью, особенно когда они плохо растворимы в нефти, требуется более интенсивное и продолжительное перемешивание, но не настолько, чтобы образовалась высокодисперсная система, которая плохо осаждается. Обычно перемешивание нефти с деэмульгатором осуществляют в сырьевом центробежном насосе. Однако лучше иметь такие специальные смесительные устройства, как диафрагмы, клапаны, вращающиеся роторы и т.д. Целесообразно также иметь на ЭЛОУ дозировочные насосы малой производительности. [c.185]

    Смолы являются в известной степени стабилизатором, предотвращающим фло-куляцию асфальтенов в нефти и нефтяных остатках, и оказывают существенное влияние на растворимость асфальтенов. Известно, что асфальтены, выделенные из одной нефти, не растворяются в масляных фракциях других нефтей до тех пор, пока не будут добавлены смоляные фракции в соотношении, близком (но не менее 75 % от природного) к существовавшему в той нефти, из которой первоначально выделялись асфальтены. [c.481]

    К сожалению, у флотационного метода есть один серьезный недостаток та часть нефти, которая растворена в воде, флотацией не удаляется. Добавим, что растворимость бензина в воде составляет 50 г на тонну, а для некоторых сернистых нефтей она превышает 100 г. Поэтому ученым и специалистам предстоит создать эффективные методы полной очистки сточных вод от нефтепродуктов. [c.95]

    Винилиденхлорид хорошо растворяется в хлорорганических растворителях, углеводородах нефти, плохо растворяется в воде. Растворимость винилиденхлорида в воде при 20 °С равна 0,04%, а воды в винилиденхлориде — 0,4%. С водой образует азеотропную смесь, температура кипения которой 31,5 °С содержание в смеси винилиденхлорида 99,35%. [c.112]


    Минеральное масло. Это вещество, растворимое в стандартном лигроине (бензине-растворителе, к-пентане или изопентане) [12—13] и не удаляемое из раствора такими адсорбентами, как фуллерова земля, активированный уголь или силикагель. Как указано выше, эта нефть, но-видимому, не очень отличается от любой другой циклической нефтяной фракции того же молекулярного веса, содержащей обычные компоненты, включая даже парафины [14—15]. [c.536]

    Растворимость растворим в воде, частично растворим в нефти [c.267]

    Разделение систем частично растворимых друг в друге веществ на практически чистые компоненты представляет большой интерес для ряда химических, гидролизных и лесохимических производств, а в технологии переработки нефти играет важную роль, при разработке схем регенерации водных растворов избирательных растворителей, например фурфурола или фенола, используемых в процессах селективной очистки масляных дистиллятов. [c.265]

    Можно предполагать, что предварительно образуются нестойкие полисульфиды, которые При разложении и образуют эту серию соединений. Этй последние, будучи растворимы в водных растворах, переходят снова в нефть, но так как докторский раствор на них действия не оказывает, то нефть очищается, т. е., иначе говоря, do-держит уже меньше серы в виде сероводорода и меркаптанов. [c.205]

    При депарафинизации автолового дистиллята туймазинской нефти в растворе алкилата, изопропилового спирта и метилэтилкетона с добавлением разных активаторов наибольший эффект достигнут при использовании спиртов и их смесей (10% масс.), особенно когда растворителем служили,изопропиловый спирт и метилэтилкетон [61]. Этиленгликоль в концентрации 10% (масс.) при депарафинизации этого же дистиллята в растворе изопропа-нола оказался более эффективным активатором, чем вода. Некоторые соединения выполняют одновременно роль растворителя и активатора, например изопропанол, метилэтилкетон, хлористый метилен. В промышленных условиях часто используют двойной растворитель, один компонент которого является растворителем, а другой — активатором, например смесь бензина и изопропанола. Рекомендуются также смеси ксилола и изогексанола, изопропанола и метанола (рис. 86) и другие смешанные растворители. В ряде предложенных трехкомпонентных растворителей одним из компонентов является вода [55, 62, 63], присутствие которой имеет как преимущества, так и недостатки. Вода в отличие от органических растворителей не растворяется в нефтепродукте и, следовательно, не может повышать растворимость в нем карбамида. В то же время вода, являясь растворителем карбамида, способствует гидролизу последнего, что ухудшает технико-экономические показатели процесса. [c.216]

    Необходимое для процесса количество активатора зависит от его природы. Так, для депарафинизации дистиллятов грозненской нефти в растворе углеводородного растворителя требуется метилового спирта 2 (масс.), этилового спирта 25% (масс.), ацетона или метилэтилкетона 40% (масс.). При использовании в качестве активатора пропилового спирта очень важно, чтобы содержание в нем воды было 8-9% (масс.).Вода увеличивает растворимость карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. Однако при содержании воды более Э% процесс комплексообразования ухудшается. Безводные активаторы, как правило, не способствуют протеданию реакции комплексообразования. [c.75]

    В 1970-х гг. в США запатентован метод перекачки добываемых на Аляске нефтей в виде эмульсии, полученной путем добав-в и к нефти соляного раствора 0,1-5 % по весу обычных поверхностно-активных веществ неионогенного типа. К таким ПАВ относятся растворимые в нефти одноатомные синтетические двухатомные спирты и другие аналогичные продукты. Эксперименты показали, [ТО такая эмульсия, содержащая от 40 до 70 % нефти по объему, 1[меет сравнительно небольшую вязкость при температурах от О до [c.119]

    Образование в нефти кристаллов парафина — новой фазы — возможно, когда нефть как раствор находится в метастабильном, т. е. неустойчивом, состоянии [7], например при пересыщении нефти парафином. Пересыщение возможно при снижении температуры. Между растворимостью парафина и температурой установлена степенная зивисимость  [c.32]

    В парогазовых рабочих агентах высокого давления, предназначенных для закачки в нефтяные пласты и получаемых окислительным пиролизом водонефтяных эмульсий или сжиганием последних в воздушном окислителе, содержание азота превышает 50% в первом случае и 80% во втором (в сухих газах). Эти агенты (в том числе азот) имеют температуру 200—250° С, т. е. являются теплоносителями, и находятся под высоким давлением (150—200 ama), что позволяет рассматривать их как вытеснители и, частично, как растворители нефти. Азот растворяется в воде, маслах и нефти, поэтому при закачке в пласты в составе парогазовой смеси он будет оказывать положительное влияние на вытеснение нефти [8—10]. А. А. Черепенников [9] указывал на то, что инертные газы растворяются в нефти значительно лучше, чем в воде, и приводил данные об отношении растворимости азота в нефти к растворимости азота в искусственно минерализованной воде, содержащей 200 г Na l на 1 л, т. е. близкой по степени минерализации к пластовым водам нефтяных месторождений  [c.78]

    Практически разделение смол проводили по следующей схеме (рис. 6.1). Выделенные из нефти смолы растворяли в гептане при комнатной температуре при этом растворимость продукта иногда оказывалась неполной то ли из-за вторичных превращений компонентов при храпении, то ли из-за ухудшения сольв а тирующих свойств гептана при снижении температуры от 98° (температура в экстракторе Соксле- [c.183]

    Существенное отличие смол от асфальтенов заключается в их растворимости и молекулярно-массовом распределении. Первые растворимы во всех углеводородах нефти, сами являются растворителями асфальтенов и той средой, которая обеспечивает переход от полярной части нефти (асфальтены) к неполярной [8]. Смолы являются в известной степени стабилизаторами, предотвращающими флокуляцию асфальтенов в нефти и нефтяных остатках, и оказывают существенное влияние на растворимость асфальтенов. Известно, что асфальтены, выделенные из одной нефти, не растворяются в масляных фракциях других нефтей до тех П01р, пока не будет добавлено смоляных фракций в соотношении, близком к таковому, существовавшему в той нефти, из.которой первоначально выделялись асфальтены (но не менее 75% от природного) [8]. [c.37]

    Сэдбери, Шок и Мани [24] сообщают, что разбрызгивание раствора бихромата натрия и щелочного раствора нитрита натрия является эффективной мерой защиты от атмосферной коррозии. Применение бихромата натрия ограниченно, так как он взаимодействует с остатками этилированного бензина с образованием осадка хромата свинца. Защитная пленка нитрита натрия не является, по-виднмому, долговечной. Эти же авторы охарактеризовали ряд других ингибиторов и нашли, что весьма эффективны растворимые масла и сульфонаты. Наилучшие результаты были получены при применении состава, содержащего сульфонат кальция, сульфонат натрия и в качестве связки смоляной аминстеарат. Курц [11] нашел, что силикат натрия не эффективен, а смесь нитрита натрия и гидроокиси натрия с добавкой смачивающего агента в серии испытаний обеспечивала 90—95%-ную защиту пустых танков. Трездер [7] считает, что опрыскивание стенок, загрязненных остатками нефти, щелочным раствором с pH>7,8 одновременно очищает стенки танка и замедляет их коррозию. [c.306]

    Газы газоконденсатных месторождений отличаются от обыч-ных газовых тем, что метану в них сопутствуют большие кбличе-V. ства (2—5% и более) гомологов С5 и выше. Эти углеводороды при снижении давления на выходе газа конденсируются и выпадают , в конденсат. Образование таких месторождений связывается с об- ратной растворимостью нефти в газах под высоким давлением в глубинных пластах. Плотность этана и пропана при сверхкрити-ческих температурах под давлением порядка 750 ат и выше действительно превышает плотность нефти, и поэтому жидкие углеводороды нефти будут растворяться в сжатом газе. Состав газов газоконденсатных месторождений после отделения конденсата близок К составу типичных сухих газов. Месторождения этого типа имеются в Азербайджане, в Саратовской области и других местах. [c.17]

    Очень важные выводы о структуре колец в смазочных маслах сделаны Россини и сотрудниками [16, 23, 27] в результате обширных исследований нефти Понка. Масляное сырье было получено из сырой нефти в количестве 10%, твердый парафин бш удален при температуре —18° хлористым этиленом. После удаления парафинов продукт был экстрагирован при 40° жидкой двуокисью серы. Рафинат (нерастворимый в двуокиси серы) был обработан силикагелем для получения части продукта, бесцветного как вода, и части продукта, адсорбированного силикагелем. Экстракт после обработки двуокисью серы был дополнительно обработан при температуре —55° петро-лейным эфиром, при этом получились и продукт, растворимый в петро-лейном эфире, и асфальтеповая часть, остающаяся в растворе двуокиси серы.  [c.30]

    В этом последнем случае предпочтительны бензины, богатые нафтенами или ароматикой, например прямогонные фракции из нефтей с побережья Мексиканского залива или Калифорнии экстракты сольвентной очистки, полученные при обработке реформатов селективными растворителями (например диэтиленгли-колем) узкие фракции катализатов риформинга парафинистые бензины, к которым добавлены другие соединения (например толуол) или еще более сильные синтетические растворители — бу-танол и бутилацетат. В определенных случаях растворяющая способность может быть увеличена добавлением нескольких процентов такого соединения, как монолеат глицерина [25]. Рецептура таких комбинированных растворителей является весьма сложной, и для определения их качества установлено несколько особых проб. Сюда относятся проба минимального относительного объема растворителя для определения растворяющей способности по отношению к нитроцеллюлозе [26, 27], каури-бутановая проба [28, 29], определение анилиновой точки, определение растворимости в диметилсульфате и вязкости различных стандартных растворов смол [30—32]. [c.562]

    Нефтеносные площади расположены обычно в проницаемых пластах (песок, песчаники), окруженных ненроницаемыми пластами. Они покрыты газовыми месторождениями, находящимися под давлением, и снизу поддерживаются водным слоем. Между газом и нефтью устанавливается равновесие, являющееся функцией температуры и давления. С одной стороны, нефть стремится к испарению и отдает газу наиболее летучие составные части. С другой стороны, газ растворяется в нефти и тем сильнее, чем выше его температура ожиження. Эта растворимость газа в жидкости возрастает с давлением. [c.130]

    Если мы имеем чистый водный раствор мыла, то гидролиз идет очень слабо виду обра тимости реакции в случае же присутствия нефти, в которой кислота легко растворима, равновесие нарушается, и Б этом случае гидролиз может итти гораздо дальше. [c.193]

    Гораздо легче (но и то неполно) нефть растворяется в амиловом, а затем и в этиловом спиртах, причем и здесь растворимость падает по мере перехода от низших фракций к высшим. Р. За-лозецкий, пользуясь вышеуказанными свойствами амилового и этилового спиртов, определяет содержание парафина в нефти, для чего последняя на холоду обрабатывается вначале амиловым спиртом, а затем этиловым, причем первый из них растворяет пара фин, а второй осаждает его из раствора. Таким образом, по отношению парафина амиловый спирт является растворителем, а этиловый — осадителем. Лучшими растворителями нефтей и ее продуктов являются серный эфир, бензол, сероуглерод, хлороформ и четыреххлористый углерод .  [c.72]


Смотреть страницы где упоминается термин Нефть растворимость и растворяющая: [c.290]    [c.59]    [c.24]    [c.193]    [c.333]    [c.193]    [c.296]    [c.75]    [c.45]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте