Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиловые спирты свойства

    Амиловый спирт Свойства чистого спирта Растворимость при 20 и 30°, % вес.  [c.222]

    Известны восемь изомеров амиловых спиртов. Основные свойства этих изомеров приведены в табл. 21. [c.84]

    Основные свойства амиловых спиртов [c.84]

    Амиловый спирт, обладая хорошим стабилизирующим эффектом, имеет более низкие антидетонационные свойства, что снижает его ценность как компонента автомобильных бензинов. В связи с этим работу проводили с изопропиловым, нормальным бутиловым и изобутиловым спиртами и их смесями. Эффективность действия этих стабилизаторов проверяли на бензино-метанольных смесях, в которых использовали бензин каталитического риформинга жесткого режима в смеси с бензином прямой перегонки (база А для получения бензина. АИ-93) и товарный бензин А-66 (база Б для получения бензина А-76). Метанола в смесях содержалось 14 и 16%, концентрацию стабилизатора повышали от 3—5 до 7—9%, соответственно снижая долю базового компонента. Лучшим стабилизирующим действием обладал нормальный бутиловый спирт, несколько худшие результаты получены для изобутило-вого спирта. Бензино-метанольные смеси, содержащие в качестве стабилизатора изопропиловый спирт и его смеси с нормальным и изобутиловым спиртами в соотношении 1 1, расслаивались при значительно более высоких температурах (рис. 2). [c.109]


    В неводных растворителях соли также повышают поверхностное натяжение, причем величина этого эффекта зависит от природы растворителя. Так, в гомологическом ряду спиртов способность повышать поверхностное натяжение быстро падает с увеличением молекулярного веса растворителя. В этиловом спирте эта способность вдвое меньше, чем в метиловом, а в амиловом она совсем незначительна. Объяснение этому явлению. следует, по-видимому, искать во влиянии силового поля молекул растворенной соли на молекулы поверхностного слоя. Такое влияние обратно пропорционально толщине углеводородной части молекул растворителя, образующих поверхностный слой. Экранирующее действие мономолекулярного слоя метилового спирта невелико, тогда как в молекуле амилового спирта четыре группы СНа образуют такой плотный экран, что молекулы соли уже слабо влияют на свойства поверхностного слоя. [c.32]

    Теория П. Дебая и Э. Хюккеля объяснила многие свойства растворов сильных электролитов. Однако с помош,ью этой теории невозможно объяснить наличие аномальной электрической проводимости, впервые обнаруженной И. А. Каблуковым (1870) при исследовании растворов в амиловом спирте. Обычно удельная электрическая проводимость концентрированных растворов уменьшается с добавлением электролита. И. А. Каблуков выявил факт увеличения удельной электрической проводимости с дальнейшим ростом концентрации НС1. Подобная концентрационная зависимость удельной электрической проводимости была впоследствии обнаружена в других неводных и водных растворах. Современные теории растворов электролитов объясняют аномальную электрическую проводимость образованием ионных ассоциатов. В определенной области концентраций в растворе образуются ионные пары типа К А , уменьшающие электрическую проводимость. При увеличении концентрации к ионной паре присоединяется третий ион. Образуются тройники типа К" А К или А К А , обладающие электрическим зарядом и способные переносить ток. В связи с этим удельная электрическая проводимость растет. [c.136]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]


    Создание бутлеровской теории химического строения органических соединений позволило объяснить большинство случаев изомерии. Стало ясно, что они являются результатом различий в химическом строении при одинаковом составе молекул. Однако все же встречались случаи изомерии, которые не поддавались истолкованию и с этих позиций. Это было известное еще с начала XIX в. существование пар оптических антиподов — веществ, полностью совпадающих друг с другом по всем физико-химическим свойствам, но имеющих противоположный знак вращения плоскости поляризации света. Из числа таких оптически активных веществ в то время были известны, например, винная и молочная кислоты, амиловый спирт, терпены, сахара и др. Не находили объяснения также и различия физико-химических свойств у некоторых пар непредельных соединений, которые, по всем данным, имели одинаковое химиче- [c.33]

    Для этого амилового спирта известны два изомера, молекулы которых имеют одно и то же строение, выражаемое только что приведенной формулой. По всем химическим и большинству физических свойств эти два изомерных спирта ничем не отличаются друг от друга. Их плотности, температуры кипения, показатели преломления и т. д. совершенно тождественны между собой. Но одно свойство отличает их друг от друга при прохождении через них поляризованного света один из этих спиртов вращает плоскость поляризации светового луча вправо, другой—вращает эту плоскость на равный угол влево. [c.154]

    Применение серной кислоты в качестве водоотнимающего средства ограничено из-за ее окислительных свойств. Этилен, полученный путем нагревания этилового спирта с серной кислотой, всегда загрязнен двуокисью углерода и двуокисью серы. Количество этих загрязнений можно уменьшить прибавляя сульфат меди и пятиокись ванадия, но все же этот метод дает худшие результаты по сравнению с другими методами получения этилена. В общем при применении в качестве водоотнимающего средства серной кислоты следует избегать высоких температур и добавлять ее очень осторожно из-за возможности обугливания вещества. Например, при получении пентена-1 из амилового спирта необходимо употреблять значительно меньшее количество серной кислоты, чем при получении пропена или 2-метилпропена из соответствующих спиртов, так как в первом случае происходит значительное обугливание вещества . Применение малых количеств серной кислоты или проведение реакции в присутствии большого избытка спирта приводит к образованию значительных количеств эфира и в связи с этим—к понижению выхода алкена. [c.697]

    На практике для разделения аминокислот и пептидов основного характера используют системы, содержащие фенол и крезол, для нейтральных — смеси с бутиловым спиртом и уксусной кислотой или с амиловым спиртом, а для кислых аминокислот и пептидов — системы, содержащие соединения основного характера (обычно пиридин). Если соединение плохо растворимо в подвижной фазе и остается на стартовой линии, следует увеличить гидрофильность системы, например, добавлением муравьиной кислоты, метанола или формамида. Если же вещество хорошо растворимо в подвижной фазе и движется вместе с фронтом растворителя, следует использовать органический растворитель с более выраженными гидрофобными свойствами, например изоамиловый, бензиловый спирты и др. [c.126]

    Свойства Амиловый спирт представляет бесцветную, прозрачную нейтральную жидкость. Он в воде мало растворим и смешивается со спиртом, эфиром и бензином. Уд. в. его 0,814,- т. к. 131°. [c.118]

    СВОЙСТВА АМИЛОВЫХ СПИРТОВ [c.129]

    Свойства. Блестящие красные, очень гигроскопичные кристаллы в присутствии следов воды тотчас желтеют. Растворяются в воде, эфире н амиловом спирте. [c.1312]

    Анион У , обычно обладает не только нуклеофильными, но и основными свойствами и может отщепить водород от Р углеродного атома карбокатиона, что приведет к образованию олефина. Так, при действии гидроксил-аниона на катион (V) вместо ожидаемого трет.-амилового спирта может получиться триметилэтилен [c.166]

    ОДНОГО эфира адипиновой кислоты, полученного при этерификации ее смесью трех амиловых спиртов, со свойствами адипинатов каждого из этих спиртов и со свойствами смеси последних эфиров (табл. 38 и 39). [c.119]

    В ряде случаев в алфавит включено общее название изомерных соединений, при котором даются общие формула состава и молекулярная масса, а затем приводятся отдельные изомеры, для которых даются их формулы строения и свойства. Например, спирты СбН ОН следует искать под названием Амиловые спирты, за которым расположены 2,2-диметил-1-пропанол 2-метил-1-бутанол 3-ме-тнл-1-бутанол и т. д. Или за названием Крезолы следуют сокращенно обозначенные орто-, мета- и пара-изомеры о-К. м-К. п-К. н их характеристики. [c.119]


    Амиловые спирты рассматриваются токсикологией как ядовитые вещества, обладающие сильно раздражающими и наркотическими свойствами. У человека прн остром отравлении на- блюдается раздражение глаз и особенно дыхательных путей, головная боль, тошнота, рвота, поверхностное дыхание. Изоамиловый спирт обладает резко выраженным местным действием, [c.101]

    Большинство оснований алкалоидов труднорастворимы или нерастворимы в воде и растворимы в органических растворителях этиловом спирте, эфире, хлороформе, амиловом спирте и др. Однако жидкие алкалоиды в отличие от большинства соединений этого класса хорошо растворяются в воде даже в виде оснований. Это свойство надо учитывать при проведении химико-токсикологического анализа, особенно когда поставлено специальное задание произвести исследование на наличие определенного алкалоида. [c.161]

    Ценные свойства амиловых спиртов и их сложных эфиров с низшими жирными кислотами — способность к растворению, летучесть и др. — привели к широкому использованию их в мировой технике. [c.87]

    СВОЙСТВА И ПРИМЕНЕНИЕ СИНТЕТИЧЕСКИХ АМИЛОВЫХ СПИРТОВ 865 [c.865]

Таблица 138. Физические свойства амиловых спиртов Таблица 138. <a href="/info/6739">Физические свойства</a> амиловых спиртов
    Гораздо легче (но и то неполно) нефть растворяется в амиловом, а затем и в этиловом спиртах, причем и здесь растворимость падает по мере перехода от низших фракций к высшим. Р. За-лозецкий, пользуясь вышеуказанными свойствами амилового и этилового спиртов, определяет содержание парафина в нефти, для чего последняя на холоду обрабатывается вначале амиловым спиртом, а затем этиловым, причем первый из них растворяет пара фин, а второй осаждает его из раствора. Таким образом, по отношению парафина амиловый спирт является растворителем, а этиловый — осадителем. Лучшими растворителями нефтей и ее продуктов являются серный эфир, бензол, сероуглерод, хлороформ и четыреххлористый углерод .  [c.72]

    Представления об образовании ионных атмосфер в растворах электролитов, нашедшие отражение в теории Дебая — Хюккеля, объяснили многие свойства электролитных растворов. Однако ряд экспериментальных фактов не объяснялся этой теорией. Непонятной была, например, аномальная электрическая проводимость, впервые обнаруженная Каблуковым (1890) при исследовании растворов НС1 в амиловом спирте. Обычно удельная электропроводность концентрированных растворов уменьшается с добавлением электролита. Каблуков нашел, что начиная с некоторой высокой концентрации электрическая проводимость раствора НС1 в амиловом спирте с дальнейшим ростом концентрации не уменьшалась, а возрастала. Впоследствии такого рода концентрационная зависимость электрической проводимости была обнаружена во многих других системах, включая водные растворы (например, растворы AgNOa). [c.445]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкипсерные кислоты, не образуя диалкил сульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый,. изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропор-ционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококинящие углеводороды [11]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе сернох кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    Наряду с каждым оптически активным соединением всегда существует также и другое, обладающее такими же химическими и физическими свойствами и отличающееся тем, что оно вращает плоскость поляризации света на тот же угол, но в сторону, противоположную изо-.мерному соединению. Так, наприлгер, известны миндальная кислота с удельным вращением —157° и изомерное соединение с удельным вращением + 157° наряду с левовращающим амиловым спиртом СгНз — СН—СНгОН с удельным вращением —5,9° существует и [c.130]

    По физическим свойствам ра зличают две группы органических растворителей легкие и тяжелые. К группе легких растворителей (легче воды) относятся диэтиловый эфир С Н.ОСаН, (уд. вес 0,71), амиловый спирт T ,,OH (уд. вес 0,81), бензол С Н (уд. вес 0,88) и другие. К группе тяжелых растворителей относится четыреххлористый углерод СС1 (уд. вес 1,59), хлороформ СНС1з (уд. вес 1,49) и др. [c.114]

    Ассоциация ионов в растворах. Если раствор электролита содержит достаточно большое количество ионов, то между ними возникает электростатическое взаимодействие, влияющее на свойства раствора. Еще в 1890 г. И. А. Каблуковым было обнаружено явление аномальной электропроводности. Обычно с увеличением разведения в растворах слабых и сильных электролитов увеличивается как степень диссоциаций, так и подвижность ионов, т. е. увеличивается электропроводность при уменьшении концентрации электролита. Однако при исследовании растворов хлористого водорода в амиловом спирте И. А. Каблуков обнаружил аномальное увеличение электропроводности раствора при значительном повышении концентрации НС1. Позже этот факт был объяснен обра-зованием сложных комплексных ионов, растворы которых хорошо проводят электрический ток. Таким образом, для растворов характерно не только явление диссоциации, но и обратное ему явление ассоциации — соединение ионов друг с другом, а также ионов с молекулами растворенного вещества. [c.231]

    Физические свойства. Спирты представляют собой бесцветные (в тонком слое) нейтральные соединения низнтие члены гомологического ряда мсгучи на вкус. Растворимость спиртов в воде убывает, по мере возрастания молекулярной массы мстапол, этанол н пропапол с водой смешиваются в любых соотношениях, тогда как следующие шеиы гомологического ряда (бутиловый, амиловые спирты) ограниченно растворимы в воде. [c.319]

    В 1889—1891 гг. появились работы И. А. Каблукова, носвя-ш,енные измерению электропроводности растворов электролитов в органических растворителях. Заинтересовавшись решением вопроса, как влияет природа растворителя на химвческие свойства кислот, он исследовал электропроводность хлороводорода в различных растворителях (бензол, ксилол, гексан, эфир, метиловый, изобутиловый, амиловый спирты). Им было найдено, что электропроводность хлороводорода в эфире уменьшается с разведением. Явление,— писал И. А. Каблуков,— неожиданное, так как для большинства водных растворов наблюдается обратное. Подобное уменьшение молекулярной электропроводности показывают также... растворы в изоамильном спирте Эти экспериментальные данные противоречили положению, установленному Ф. Кольрау- [c.320]

    В основе эмульгирующего действия лежат, как указывалось, механические свойства защитных оболочек нефтяных глобул — их прочность и способность быстро восстанавливаться при местных повреждениях, гидратация и диффузность в дисперсионной среде. Важную, но менее значительную роль играет поверхностная активность эмульгаторов. В некоторых случаях весьма активные ПАВ являются даже деэмульгаторами (этиловый и амиловый спирты, НЧК), так как, избирательно адсорбируясь, они вытесняют вещества менее активные, но с механически более прочными защитными слоями. Важной функцией ПАВ является их диспергирующее действие. Мыла, дающие прочные структурированные и сольватированные оболочки и обладающие высокой поверхностной активностью, являются оптимальными эмульгаторами, если отсутствует хлоркаль-циевая агрессия. [c.368]

    Морфин — кристаллическое вещество. При нагревании до температуры 100° теряет молекулу кристаллизационной воды и плавится с разложением при 254° Плохо растворим в воде (в холодной 1 5000, в кипящей 1 500) и эфире (1 7630). Эфир, насыщенный водой, растворяет морфин еще хуже (1 10600). Растворимость морфина в спирте 1 30 (в холодном) и 1 13 (в кипящем). Бензол и хлороформ также плохо растворяют морфин (1 1600 и 1 1525). Несколько лучше морфин растворяется в амиловом спирте (1 113) и уксусноамиловом эфире (1 537). Как фенол морфии хорошо растворяется в едких щелочах. Оптически активен — [а] 1> = —134,0° (из метилового спирта). Обладает сильно основными свойствами, что объясняется наличием группы > N—СНз. Водные растворы морфина окрашивают лакмус в синий цвет. С кислотами образует хорошо кристаллизующиеся соли. Вод ные растворы солей имеют нейтральную по лакмусу реакцнЮ Фармакопейным препаратом является главным образом хлоргидрат морфина, [c.204]

    Превра1цсние хлористого метила в метиловый спирт 848. Получение простых и сложных эфиров из хлористого метила 852. Превращение хлористого этила в этиловый спирт и его производные 853. Превращенпе высших галоидных алкилов, главным образом хлористых алкилов в спирты, путем гидролиза 854. Превращение монохлорзамещснных пентанов в амиловые спирты 855. Получение амиловых спиртов в производственном масштабе 857. Другие способы получения амиловых спиртов 858. Получение амиловых эфиров из хлорзамещенных пентанов 860. Другие способы получения амиловых эфиров 862. Свойства и применение синтетических амиловых спиртов и их эфиров 865. Получение высших спиртов и высших галоидных соединений алкилов 867. [c.640]

    При изучении процессов превращения различных монохлорзамещенных производных пентана и изопентана путем гидролиза в соответствующие амиловые спирты необходимо отметить резкое различие в свойствах трех ооновных типов монохлорзамещенных производных, которое они обнаруживают при этих условиях. При сравнении скаросп гидролиза трех типов монохлорпроизводных действием горячей воды оказывается, что третичные хлориды гидролизуются в значительной степени вторичные хлориды гидролизуются уоке более ме дленно, первичные же х- -гоиды в этих условиях совершенно не поддаются гидролизу. С другой стороны, при взаимодействии хлоридов с солями органических кислот в гомогенном растворе, например при 180°, наблюдается как раз обратное явление. В этом случае первичные хлориды легко вступают в реакцию и образуют эфиры вторичные реагируют гораздо медленнее, т >етичные же хлориды при этих условиях со всем не образуют эфиров, но легко переходят в амилены. Во время гидролиза хлористых соединений ам ила как при действии одной в>оды или щело- [c.855]

    Амиловый эфир уксусной кислоты является прекрасным растворителем для нитроклетчатки и, так же как и синтетический амиловый спирт, может применяться в качестве растворителя для ряда смол. Однако ацетат целлюлозы в этом эфире не растворяется. Пентацетат обладает слабы.ми, хотя и не опасными, ядо-виты.ми свойствами [c.866]

    Для предотвращения окисления окрашенных продуктов реакций рекомендуется применять соли разных металлов в качестве стабилизаторов красителей Стенгауза. Стабилизирующими свойствами обладают хлорид натрия [147, 150, 151], хлорид олова(П) [124, 125, 133], двузамещенный фосфат натрия [138], а также мочевина [144], тиомочевина [144], щавелевая кислота [142]. Добавление этилового спирта и снижение температуры реакции также увеличивают устойчивость окраски продуктов [152]. Кроме того, для повышения стабильности рекомендуется экстрагировать продукты амиловым спиртом [153]. [c.112]


Смотреть страницы где упоминается термин Амиловые спирты свойства: [c.402]    [c.463]    [c.463]    [c.428]    [c.865]    [c.112]    [c.167]    [c.130]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.866 ]




ПОИСК





Смотрите так же термины и статьи:

Амиловые спирты, загрязнения в лих свойства его

Амиловые спирты, загрязнения в лих свойства и применение

Амиловый спирт



© 2024 chem21.info Реклама на сайте