Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация радиационная

    Применение метода ЭПР в условиях матричной изоляции позволило не только изучить спектры ЭПР многих парамагнитных центров, но также существенно продвинуло вперед понимание механизмов радиацион нох имических и фотохимических процессов. Удалось также получить ценные сведения о подвижности реакционноспособных центров в твердой фазе — вращении, диффузии и о связи подвижности с химическими процессами — реакциями и рекомбинацией радикалов. [c.250]


    Образование небольших кластеров (пар, триплетов и т. д.) при взаимодействии единичных дефектов или их распаде в процессе диссоциации. В качестве примера можно привести образование акцепторных пар Li в германии и кремнии. Аналогично кинетические зависимости оказываются справедливыми для процессов рекомбинации радиационных дефектов, например рекомбинации междоузельных атомов и вакансий [1, 2]. [c.566]

    При преобладании радиационной стабилизации реакция рекомбинации представляется схемой [c.120]

    Типичными условиями Б радиационной химии являются наличие холодного молекулярного газа и малых концентраций аа1)я к81[ных частиц. Поэтому рекомбинация происходит по закону второго порядка при столкновениях электронов и отрицательных ионов с положительными ионами. При рекомбинации же в сравнительно плотной плазме большую роль играют процессы типа е+е-1-А+ = е+А [122]. [c.194]

    Реакциям свободных атомов и радикалов, образовавшихся в первичных процессах, а также в быстрых ионно-молекулярных реакциях и реакциях возбужденных частиц, требуется быть также сравнительно быстрыми, для того чтобы обогнать процесс нейтрализации. Кроме того, при самой нейтрализации вследствие ее диссоциативного характера рождаются новые свободные радикалы и, поскольку рекомбинация атомов и радикалов имеет константы скорости на несколько порядков меньше, чом константы нейтрализации, значительная доля реакций радикалов с молекулами и сама рекомбинация атомов и радикалов являются в последовательности элементарных процессов сложной радиационно-химической реакции самыми поздними. [c.196]

    Радиационная деструкция. Под действием проникающего излучения в полимере образуются положительно заряженные ионы, электроны, возбужденные молекулы, радикалы и атомы водорода. В результате совокупности превращений этих частиц в полимере происходят деструкция макромолекул на стадии радикалов или ионов сшивка макромолекул при рекомбинации макрорадикалов или реакции макрорадикала с двойной связью макромолекулы окисление в присутствии молекулярного кислорода образование двойных связей в полимере вследствие миграции свободной валентности по цепи или диспропорционирования радикалов образова- [c.245]

    Радиационное старение. В связи с интенсивным развитием ракетостроения, космического приборостроения, освоения и использования атомной энергии большое значение приобретает старение, возникающее при радиационном облучении. В результате его в резинах происходит возбуждение молекул каучука и образование свободных радикалов, являющихся центрами реакции рекомбинации и образования сшитых пространственных структур с повышенной густотой сетки, или деструкция и окисление вулканизатов. [c.177]


    Совместное действие ионизирующего излучения и кислорода приводит к окислению хлорированных полимеров. Этот процесс можно ингибировать. Скорость его зависит от химической природы полимера, наличия и природы ингибитора и т. д. Так, действие радиоактивного излучения большой мощности в присутствии кислорода приводит к окислению ХСПЭ [121]. Однако доля присоединенного кислорода значительно меньше, чем у резин на основе других каучуков (НК, СКН-26, СКД, СКИ-3, наирита). При одной и той же толщине образца с увеличением мощности дозы до 2,3 МР/ч доля присоединенного кислорода меньше, чем в случае облучения резин на основе ХСПЭ при мощности дозы 0,045 МР/ч. Предполагается, что это вызвано большей вероятностью рекомбинации радикалов, возникающих при радиационном старении, а также диффузионными задержками кислорода при высоких дозах облучения. [c.53]

    Состав битума существенно сказывается на свойствах битумных блоков. Увеличение количества асфальтенов приводит к более слабому сцеплению минеральных составляющих с гидрофобным материалом и к увеличению скорости вымывания радионуклидов. Однако асфальтены увеличивают радиационную стойкость, которая является основным необходимым свойством для долговечности закрепленных блоков. Включение солей, в частности, нитрата натрия, увеличивает радиационную стойкость по сравнению с чистыми битумами. Это объясняется рекомбинацией возника- [c.547]

    При радиационном облучении отверждение покрытия происходит под действием потока ускоренных электронов, генерируемого в специальной установке Проникая в слой нанесенного покрытия, ускоренные электроны вызывают образование свободных радикалов и ионов, которые инициируют реакцию роста цепи Обрыв цепи вероятнее всего происходит в результате рекомбинации и передачи цепи При увеличении мощности облучения эти реакции конкурируют с основной реакцией роста цепи Оптимальная мощность облучения — 2,5—3,0 кВт/кг. [c.75]

    Рассмотрим теперь основные процессы с участием катион-радикалов. Масс-спектрометрическими исследованиями было установлено, что первичные катион-радикалы могут вступать в быстрые реакции с различными молекулами . Эти ион-молекулярные реакции могут иметь значение для радиационной химии, если они протекают настолько быстро, что могут конкурировать с процессом рекомбинации иона с электроном. Это возможно только в том случае, если эти реакции не требуют энергии активации. Таким образом, только экзотермические или термонейтральные ион-молекулярные реакции представляют интерес для радиационной химии жидких систем. Примером таких реакций могут служить реакции диссоциации первичных катион-радикалов разветвленных алифатических углеводородов [c.69]

    Для радиационной химии, и для радиационной полимеризации в частности, важно знать, какая доля возникших радикалов прореагирует между собой и какая доля может быть использована для других реакций, например для инициирования полимеризации. Здесь необходимо прежде всего иметь в виду первичную рекомбинацию, т. е. рекомбинацию радикалов, образовавшихся из одной молекулы. В некоторых случаях в радиационной химии этот процесс может иметь меньшее значение, чем при термо-или фотодиссоциации. Это следует из того, что некоторые электронные и ионные процессы радиационной химии приводят не к одновременному образованию двух радикалов в одном акте, а к последовательному их образованию. [c.74]

    Простая гипотеза о радиационной рекомбинации, происходящей непосредственно между электронами зоны проводимости и дырками валентной зоны с одновременной эмиссией фотонов, по-видимому, справедлива лишь в немногих случаях [64]. Дей- [c.218]

    Для рекомбинации атомарных ионов вследствик малой вероятности радиационного захвата, т. е. процесса е -[- А+ = А — Ьл нуя но ожидать, что здесь, как и при образовании отрицательных ионов, существенную роль должен играть механизм тройного соударения е + А+ + М = = А -Ь М. [c.194]

    Поперечное сечение о,. газокинетическое сечение и вероятность Р образования молекулы Хз при рекомбинации атомов X и X для радиационной стабилизации образующейся квазимолекулы [1592] [c.246]

    Штересно отметить, что одновременно с кинетикой рекомбинации радиационных дефектов нами наблвдалась слабая и спадапцая во времени самопроизвольная люминесценция облученных образцов. Кинетика спада люминесценции во времени коррелирует с наблвдаемой методом ЭПР рекомбинацией 07 и е7 , что позволяет сделать предположение [c.54]

    В связи с таким состоянием экспериментальных исследований теоретические расчеты коэффициентов рекомбинации (радиационной, ударнорадиационной, диссоциативной) приобретают исключительно важное значение. [c.71]

    Для смесей с малыми Q момент воспламенения определяется по свечению, интенсивность которого, как правило, постоянна или имеет максимум вблизи точки перегиба или максимальной температуры. Свечение как форма радиационных потерь связано с рекомбинацией радикалов или их реакциями с молекулами, а рост концентрации радикалов прекращается до момента достижения Тт-Момент прекращения роста концентраций радикалов определяется из условий равенства скоростей рекомСииации и зарождения цепей, т. е. [c.323]


    Наиболее подробно как экспериментально, так и теоретически исследовались процессы радиационной рекомбинации галогенов. Еще Кондратьев и Лейпунский [70] опреде.ггили экспериментально, а Теренин и Прилежаева [553] рассчитали, что для атомов Вг вероятность радиационной рекомбинации составляет примерно 10 . Величина того же порядка получена и для С1 [123]. [c.121]

    Радиационная стабилизация, являющаяся обращением фотодиссоциации в области предиссоциации, была, видимо, обнарупсснп при исследовании рекомбинации атомов кислорода при высоких температурах (2500—3000 К) в [428]. В этой работе для суммарной константы скорости образования молекулы Оз в основном электронном состоянии бы то по.71учепо иырп-жение [c.122]

    Аналогичный механизм, включающий неадиабатический переход мо ду отталкиватсльным и возбужденным стабильным электронным состояниями, был рассмотрен в [343] для радиационной рекомбинации атомов О и И при очень низких температурах. При этом вследствие сравнительно малой массы Н неадиабатический переход происходит туннельным образом. [c.122]

    Главная дол первичных элементарных актов химического значения в разряде приходится на возбуждение п диссоциацию молекул на нейтральные осколки. Эти элелкнтарные процессы рассмотрены в настоящей главе. Напротив, при действии ионизирующих излучений, т. е. в радиационной химии, процессы яоиизацш электронным ударом, ионно-молекулярные реакции, рекомбинации ионов вносят существенный, а иногда и г.павпый вклад в химический розул))Тат брутто-процесса. Поэтому мы сочли целесообразным отдельно рассмот] 10 1 ь эти типы элементарных процессов. [c.173]

    В этом смысле прогноз скорости химического превращепия оказывается в радиационно-химической кинетике несравпоппо бо.ние простым и определенным, чем при любом другом способе возбуждения химических реакций. Однако предсказание того, какие вещества образуются в результате радиолиза, значительно более трудно. Это связано с том, что наряду с возбуждением и диссоциацией, на нейтральные осколки прп радиационно-химическом воздействии происходят ионизация и диссоциативная ионизация, а при вторичных процессах — еще и ионно-молекулярные реакции и рекомбинация ионов. [c.184]

    К настоящему времени экспериментально осуществлено радиационное инициирование многих цепных реакций в газовой (а также жидкой и твердой) фазе. Еще Линд и Ливингстон 1384] наблюдали радиационно-химическое инициирование реакции водорода с хлором с О 3-10 . Иссекс [262] из факта торможения скорости реакции электрическим полем заключил, что большая часть атомов водорода и хлора, ведущих затем обычную атомную цепь Н-ЬС , =- НС1+С1, С - - = НС1+Н, рождается в актах диссоциативной рекомбинации ионов. [c.225]

    При радиолитических реакциях несомненно возникают, радикалы с более низкой или термической энергией, которые будут участвовать в нормальных радикальных реакциях, не специфичных для радиационной химии. Можно подойти к оценке их выходов, если учесть, что образование более высоких алканов подавляется иодом, который дает алкилиодиды (см. табл. 10). Очевидно, что более высокие алканы возникают из предшествующих простых или тепловых радикалов, которые 3 присутствии иода фиксируются в виде алкилиоди-дов, путем рекомбинации их. На основе выходов более высоких алканов, образующихся при радиолизе пропана в отсутствие йода, бЪ1ли вычислены выходы термических радикалов (табл. 11). [c.72]

    Детектор постоякнсн скорости рекомбинации (ДПР) предназначен для количественного определения анализируемых веществ, выходящих нз хроматографической колонки, молекулы которых изменяют скорость рекомбинации в плазме газового разряда. Детектор дайной конструкции относится к потоковым детекторам. Он состоит из высокотемпературной камеры детектора (ВК) н выносного блока (ВБ), который содержит радиационный стабилизатм тока. В ВК поступают два потока азота — продувочный и газ-носитель. Принцип действия ВК основан на зависимости рекомбинации заряженных частиц от концентрации анализируемых молекул. Свободные электроны получаются при ионизации молекул продувочного газа азота а-частицами радиоизлучения  [c.247]

    Поскольку в газовой фазе ионы могут реагировать значительно быстрее, чем они расходуются в результате рекомбинации, нельзя исключать возможность их участия как важных промежуточных продуктов в газофазных радиационных процессах переработки. В равной степени не исключается и участие возбужденных молекул. Если эти ионы или возбужденные молекулы и не реагируют непосредственно как таковые, они могут привести к образованию обычных свободных радикалов. Свободные радикалы приводят к радиационным химическим явлениям, полностью сопадаюш им с теми, которые наблюдаются при использовании обычных методов термического или химического инициирования. [c.119]

    Покрытия из ПВА отличаются высокой светостойкостью. Хбтя под действием УФ-облучения и происходит частичная деструкция полимера, однако она сопровождается рекомбинацией образующихся макрорадикалов и реакциями переноса цепи, В результате увеличивается ММ полимера и появляется нерастворимая фракция. Аналогичным образом действуют на ПВА малые дозы радиационного облучения. При высоких дозах происходит деструкция ПВА с выделением уксусной кислоты. Эффект сшивания илй деструкции и критическая доза облучения зависят от природы растворителя и концентрации полимера [12]. [c.67]

    Полученные для всех клеточных линий РГ-панели паттерны (паттерны сохранения, сигнатура) наличия (+) или отсутствия (-) каждого маркера используют для построения РГ-карты. Лод-балл рассчитывают как логарифм отношения вероятности получения конкретного паттерна сохранения двух сайтов к вероятности того, что при облучении эти сайты всегда разделяются разрывом. В отличие от мейотиче-ской рекомбинации, в для частоты радиационных разрывов принимает значения от О до 1 в = О [c.461]

    Эти данные показывают, что воздействие ионизирующей радиации приводит к радиационно-стимулированной диффузии примесных щелочных ионов в кристаллах кварца. Такая миграция обусловлена тем, что щелочные ионы-компенсаторы расположены вблизи [Л104 +]-комплексов, теряющих при облучении электроны. В результате в местах локализации таких комплексов образуются области положительного заряда и электронные центры в других местах решетки. Поскольку кулоновские силы с расстоянием убывают очень медленно, то потеря заряда в какой-либо точке кристаллической решетки вызывает миграцию подвижных ионов — носителей заряда. Этому в значительной степени способствует открытый характер структуры кварца, содержащей структурные пустоты, соединенные каналами диаметром до 0,2 нм. Что же касается протонов, то, поскольку энергия Их связи с кислородами дефектных (алюминиевых) тетраэдров много больше, чем для щелочных ионов, радиационно-стимулированная диффузия протонов в кварце практически отсутствует. В этом случае при облучении происходит рекомбинация непрерывно генерируемых стационарных дырок с выбитыми электронами, а центры дымчатой окраски на алюминиево-водородных дефектах не образуются. Именно этим, как выше отмечалось, объясняется образование не окрашивающегося облучением кварца при термохимической обработке или электролизе на воздухе, когда алюмощелочные центры преобразуются в алюмоводородные. [c.149]

    Радиационная стойкость сополимеров ТФХЭ — ВДФ сравнительно низка. Фторопласт-ЗМ выдерживает облучение дозой 0,24 МДж/кг (24 Мрад). Так как в молекулярных цепях одновременно присутствуют пергалогенированные звенья и метиленовые группы, воздействие ионизирующего излучения вызывает как деструкцию, так и сшивание цепей сополимера [45, с, 105— 109], Сшивание происходит вследствие рекомбинации полимерных радикалов, образующихся за счет разрыва связей —СН, — F и — I [54]. С увеличением содержания ВДФ эффектив-, ность сшивания п стойкость сополимера к радиации возрастают. Сополимер с содержанием 70% (мол.) ВДФ выдерживает облучение дозой 0,60 МДж/кг (60 Мрад), при этом разрушающее напряжение прн растяжении, относительное удлинение при разрыве и твердость снижаются на 36,4 14,8 и 10,87о соответственно [55, с. 303]. [c.162]

    Термодинамические условия резко изменяются, а кинетические требования к катализатору смягчаются в случае применения его к обширному классу радиационных и плазменных каталитических реакций и к реакциям индивидуальных активных форм — свободных атомов, радикалов, И)Нов, возбужденных молекул. При таких реакциях проблема активации обычно отпадает или отходит на второй план. Обычно отпадают также и термодинамические затруднения. Зато при осуществлении сколько-нибудь сложных реакций усиливаются требования к каталитическому управлению селективностью и морфологией. Неудивительно, что закономерности подбора катализаторов для таких реакци могут быть обратными закономерностям подбора при обычном термическом катализе [35]. В частности, по данным Г. М. Жабровой и др. [36], при радиационном дегидрировании адсорбированных молекул циклогексана и метанола удельное превращение максимально для изоляторов (например, 8103), не содержащих переходных элементов, и минимально для переходных металлов, N1 и окислов полупроводников (N10) . Это, вероятно, объясняется тем, что радиационно-каталитическая активность зависит от скорости рекомбинации свободных электронов. [c.28]


Смотреть страницы где упоминается термин Рекомбинация радиационная: [c.49]    [c.49]    [c.122]    [c.190]    [c.196]    [c.75]    [c.247]    [c.76]    [c.632]    [c.695]    [c.462]    [c.615]    [c.656]    [c.632]    [c.54]   
Электрические явления в газах и вакууме (1950) -- [ c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Рекомбинация



© 2025 chem21.info Реклама на сайте