Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ термогравиметрия

    Лекция 1 3. Классификация термических методов. Дифференциальный термический анализ. Термогравиметрия и дифференциальная термогравиметрия. Лекция 14. Дериватограф, схема и принцип работы. Обработка результатов термического анализа. Факторы влияющие на результаты термического анализа. [c.206]

    Некоторые из названных методов являются новыми, некоторые, такие как термический анализ, термогравиметрия, применяются исследователями уже около 100 лет. [c.339]


    Для повыщения надежности идентификации было проведено предварительное исследование конденсата вулканизационных газов (маслянистые пленки на стенках цеха и оборудовании) с помощью спектральных методов (УФ- и ИК-спектроскопия), элементного анализа, термогравиметрии, ТСХ, селективных химических реакций (применяемых в функциональном органическом анализе), селективной экстракции (извлечение водой и хроматографирование водорастворимых низкомолекулярных спиртов, кетонов, альдегидов и аминов) и др. [25 — 26]. [c.82]

    Термический анализ. Одним из методов физико-химического анализа высококипящих и особенно высокомолекулярных соединений нефти является термический анализ, служащий инструментом для исследования процессов, происходящих в веществе при непрерывном нагревании или охлаждении. В зависимости от измеряемой характеристики и аппаратурного оформления термическим анализом можно получить информацию различного характера. Термографией измеряется температура образца, термогравиметрией — его масса, дилатометрией — размер, калориметрией— количество выделившегося тепла [331]. [c.159]

    МЕТОДЫ ТЕРМИЧЕСКОГО АНАЛИЗА 42.1 . Термогравиметрия [c.393]

    В описанных методах термогравиметрии и дифференциального термического анализа масса или температура исследуемой системы исследовалась как функция температуры среды. В отличие от этого в методе термометрического титрования изучают зависимость температуры анализируемой системы от объема добавляемого титранта. Таким образом, два первых метода являются методами определения, последний — методом индикации точки эквивалентности. [c.401]

    Для фазового К. а. наиб, значение имеет рентгеновский фазовый анализ и термогравиметрия (особенно при анализе минералов). Часто фазы сначала выделяют хим. и электрохим. растворением. Осн. метод изотопного К. а.— масс-спектрометрия. Для надежной идентификации компонентов при обработке результатов анализа часто используют ЭВМ. [c.251]

    Термогравиметрия используется в полимерной химии при исследовании термической деструкции полимеров (кинетика и механизм деструкции),термостойкости полимеров, окислительной деструкции, твердофазных реакций, определении влаги, летучих и зольности, изучении процессов абсорбции, адсорбции и десорбции, анализе летучести пластификаторов, состава пластмасс и композитных материалов, идентификации полимеров. [c.175]

    Термогравиметрия (ТГ), или термогравиметрический анализ (ТГА), —един из основных методов в термическом анализе. Прибор для ТГ — термовесы построен на основе печи, в которой проба механически присоединена к аналитическим весам. Первоначально термовесы разработал К. Хонда в 1915 г., но с тех пор прибор был значительно усовершенствован в отношении чувствительности, автоматической записи кривой Ат от Т, а также управления, включая скорость нагрева, атмосферу и т. д [c.468]


    В -термогравиметрии осуществляется целенаправленное управление процессами переноса, причем с помощью самого превращения. В результате такого управления может быть достигнуто так называемое квазиравновесное состояние. В этом случае экспериментальные зависимости (температура, давление) будут действительно характеристиками изучаемой реакции. Даже значительное сужение температурного интервала протекания реакций, происходящее в данном режиме исследования, решает задачу разделения стадий, что едва ли возможно в ином методе термического анализа. [c.77]

    Нерегулярности и колебательные режимы описаны в экспериментальной -термогравиметрии [86]. Независимо от причин их возникновения наиболее обоснованные выводы при анализе таких режимов могут быть получены с помощью соответствующих математических моделей. [c.99]

    Активационный анализ Термический анализ Термогравиметрия Калориметрия Термометрический анализ (энтальпиметрия) Дилатометрия [c.12]

    Термический анализ начали применять в конце XVIII в., когда химики разработали метод определения степени чистоты веществ ло температурам их плавления. Однако широкое распространение термический анализ получил лишь в 1878 г., когда немецкий ученый Э. Виде-ман предложил скорость охлаждения расплавленных металлов выражать в виде кривых в координатах температура — время. Этот метод анализа находил все более широкое применение по мере совершенствования приборов для измерения температур. В конце XIX в. появились приборы для автоматической записи температуры исследуемого вещества, которая фиксируется в виде кривой на светочувствительной бумаге. Очевидно, что с этого времени в термическом анализе оформилось методологическое направление — термография. Несколько позже, уже в текущем столетии, появилось новое направление в термическом анализе — термогравиметрия. [c.5]

    Следующий этап в изучении процессов термического разложения ферроцианидов характеризуется сочетанием чисто химических методов исследования (анализ продуктов распада) со все более широким использованием методов физико-химического анализа (термогравиметрии, волюмометрии, термографии и др.). Применение последних позволяет проследить процесс распада ферроцианидов поэтапно и наметить температурные интервалы каждого из них. Сочетание этих методов с химическим и рентгенографическим изучением продуктов разложения позволяет получить полную картину идущих при нагревании процессов. Одновременно расширяется и круг объектов исследования, в который наряду с солями щелочных и щелочноземельных катионов включаются и малорастворимые ферроцианиды тяжелых металлов. [c.239]

    Наиболее совершенным комплексным методом термического анализа, объединяющем термогравиметрию, деривативную термогравиметрию и дифференциально-термический анализ является дериватография [332], которая выполняется на одном приборе. Наибольшее распространений в СССР получил дериваторграф типа МОМ системы Паулик, Паулик и Эрден. Другие приборы отличаются от него незначительными конструкционными вариантами, предусматривающими различные печи, устройства для помещения образцов, регистрирующие устройства и др. [332]. С помощью дериватографа можно одновременно определять совокупность и последовательность физических и химических превращений — [c.159]

    В сообщении представлены результаты исследований по синтезу одностенньгх углеродных нанотрубок (ОНТ) электродуговым испарением графитовых стержней в присутствии 10-15 масс.% порошков металлов или интерметаллических соединений, по разработке методики выделения ОНТ, по изучению свойств ОНТ. Методами электронной микроскопии, окислительной термогравиметрии, химического и рентгенофазового анализов, экстракции толуолом проведена оценка содержания аморфного углерода, фуллеренов, одностенных углеродных нанотрубок (ОНТ), графитовых и металлических частиц в продуктах испарения. Диаметры ОНТ определены из полос поглощения в области дыхательной моды Раман-спектроскопии и из данных электронной микроскопии высокого разрешения. [c.193]

    Недостатком этого метода является необходимость использования сравнительно малочувствительных регистрирующих приборов для измерений в широкой области значений температуры. Таким образом, могут остаться незамеченными небольшие термические эффекты. Трудности, возникающие при этом, можно сравнить с трудностями метода термогравиметрии, при котором в большой области температур происходит медленное изменение массы вещества. И в том и другом случае целеоообразно применять дифференциальные методы. При проведении измерений в ходе реакций (или при разделении фаз), происходящих в области иебольших интервалов температуры, такой проблемы не существует. Основная область применения метода в настоящее время— термический анализ (ТА) сплавов. [c.398]

    Разновидностью политерми-ческого варианта термогравиметрии является дериватный гравиметрический метод. Суть его состоит в том, что записывают не саму кривую потери массы (подобную кривой нагревания в термографии), а производную от нее, показывающую скорость изменения массы вещества при нагревании (аналогично кривым ДТА). Как правило, политерму и ее производную, а также кривые ДТА регистрируют одновременно, что позволяет получить больший объем информации о химических превращениях в изучаемой системе. Приборы, с помощью которых проводят такой анализ, получили название дериватографов. [c.76]


    ВЗМО - высшая занятая МО ВС - (метод) валентных связей ВФ - волновая функция ГО — гибридная орбиталь ДСТС — дополнительная СТС ДТА - дифференциальный термический анализ ДТ1 — дифференциальиая термогравиметрия ИК — инфракрасный КР комбинационное рассеяние [c.10]

    По данным [16], Са (0Н)2 вступает во взаимодействие с SiOj, содержащейся в глине, с образованием низкоосновных гидросиликатов кальция в условиях высоких температур и давлений. Отмечено также, что в бетонах при автоклавной обработке глиноземистая составляющая вступает во взаимодействие с Са (0Н)2, давая гидроалюминаты кальция [351]. Анализ данных ДТА и термогравиметрии, потерь веса образцов при прокаливании и тепловых эффектов смачивания наряду с измерением pH дисперсий и кинетики структурообразования на ранних стадиях формирования структуры в суспензиях цементно-палыгорскитовых образцов, а также аналогичное изучение системы jS — палыгорскит — НаО помогли создать, по крайней мере, рабочую гипотезу, удовлетворительно объясняющую свойства цементно-палыгорскитовых смесей. [c.132]

    Дериватный термографический метод также относится к термогравиметрии. В этом случае записывают производную от термогравиметрической кривой, которая показывает скорость изменения массы вещества при его нагревании. Дериватную термогравиметрню применяют обычно одновременно с политермическим термогравиметрическим и дифференциальным термическим анализом. [c.213]

    ТЕРМОСТОЙКОСТЬ полпмеров, их способность сохранять хим. строение при новышении т-ры. Изменение хим. строения полимеров связано е деструкцией и структурированием, происходящими в них одновременно характер превращений определяется соотношением скоростей этих процессов. Количеств, критерий Т.— т-ра, при к-рой начинается интенсивная потеря массы образца или эта потеря достигает определ. доли от его исходной массы, напр, половины (7 о,з). Т. устанавливают методами термогравиметрии и дифференциального термич. анализа. Значения Го,5 для пек-рых полпмеров поливинилхлорид 270 С, полистирол 365 С, полипропилен 380 С, полиэтилен 405 С, политетрафторэтилен 500 С, полиниромеллитимид [c.569]

    Другая разновидность Г.-термогравиметрия, применяемая для исследования и анализа термически неустойчивых в-в. Взвешивание производится на спец. термовесах, позволяющих наблюдать изменение массы в-аа при повышении т-ры. По термогравиметрич. (кривым возможно раздельное определение неск. компонентов исследуемого в-ва. [c.603]

    В Т. а. можно фиксировать т. наз. кривые нагревания (или охлаждения) исследуемого образца, т.е. изменение т-ры последнего во времени. В случае к.-л. фазового превращения в в-ве (или смеси в-в) на кривой появляются площадка или изломы. Большей чувствительностью обладает метод дифференциального термического анализа (ДТА), в к-ром регистрируют во времени изменение разности т-р АТ между исследуемым образцом и образцом сравнения (чаще всего А1г О ), не претерпевающим в данном интервале т-р никаких превращений. Минимумы на кривой ДТА (см., напр., рис.) соответствуют эндотермич. процессам, а максимумы-экзотермическим. Эффекты, регистрируемые в ДТА, м.б. обусловлены плавлением, изменением кристаллич. структуры, разрушением кристаллич. решетки, испарением, кипением, возгонкой, а также хим. процессами (диссоциация, разложение, дегидратация, окисление-восстановление и др.). Большинство превращений сопровождается эидотер-мич. эффектами экзотермичны лишь нек-рые процессы окисления-восстановления и структурного превращения. На вид кривых ДТА, как и на вид кривых в термогравиметрии, оказывают влияние ми. факторы, поэтому воспроизводимость метода, как правило, плохая. [c.533]

    Для сопоставления Т. полимеров часто используют данные термогравиметрии, в частности т-ру начала потерь массы образца или т-ру, при к-рой потери массы составляют определенную долю от исходной массы образца. При использовании дифференциального термического анализа возможно более точное определение т-ры начала интенсивных хим. превращений в образце. За рубежом для оценки Т. используют т. наз. температурный индекс (Temperature Index)-т-ру, при к-рой прочностные и диэлектрич. характеристики полимерного материала изменяются на 50% приблизительно за 3,5 года эксплуатации. Эту величину находят экстраполяцией данных ускоренного термич. старения. Температурный индекс (°С) составляет, напр., для полистирола 50, полиацеталей 75-85, алифатич. полиамидов 65-80, поликарбонатов 110-115, полиимидов 240. [c.547]

    В то время как термогравиметрия позволяет измерять изменение массы пробы при нагревании или охлаждении, методы дифференциального термического анализа (ДТА) и дифференциальной сканирующей калориметрии (ДСК) связаны с измерением измепений энергии. Оба метсда тесно связаны друг с другом, давая однотипную информацию. С практической точки зрения разница заключается в принципах устройства и работы приборов в ДТА измеряют [c.473]

    ТО - термофавиметрия ОТО - дифференциальная термогравиметрия ЭТА - дифференциальный термический анализ х - время (мин), т- масса (мг) [c.304]

    Для правильного установления состава объекта и получения воспроизводимых результатов необходимо удалить влаёу из образца, высушить его до постоянной массы или определить содержание воды, так как результат анализа следует пересчитать на постоянную массу. Чаще всего анализируемый образец высушивают на воздухе или в сушильных шкафах при относительно высокой температуре (105—120 "С). Получить воздушно-сухую массу образца можно лишь для таких негигроскопичных веществ, как металлы, сплавы, некоторые виды стекол и минералов. В отдельных случаях пробы высушивают в эксикаторах над влагопоглощающими веществами (хлорид кальция, фосфорный ангидрид, перхлорат магния, драйерит aS04 I/2H2O). Длительность и температуру высушивания образца, зависящие от его природы, устанавливают заранее экспериментально (например, методом термогравиметрии). Если какие-либо особые указания на этот счет в методике отсутствуют, образцы сушат в сушильных шкафах при ПО С в течение 1—2 ч. Иногда, особенно при сушке сложных объектов (пищевые продукты, растения, ряд геологических образцов и т. п.), используют вакуумную сушку или микроволновое излучение, что часто сокращает время сушки от часов до минут. [c.68]

    ДДТА — дифференциальный термический анализ с записью второй производной ДТА — дифференциальный термический анализ ДТГ — дифференциальная термогравиметрия [c.5]

    Квазиизотермическая квазиизобарная термогравиметрия является информативным термоаналитическим методом изучения превращений соединений при нагревании. В некоторых случаях она выступае как термический анализ в квазиравновесных условиях, иногда исследователю приходится ограничиваться только квазиизотермическим подходом. Однако всегда ее применение существенно расширяет знания о термическом поведении веществ. [c.44]

    Отличительной чертой -термогравиметрии в ряду различных методов термх ческого анализа является наличие обратной связи по скорости превращения. Эта связь осуществляется таким образом, что совокупность физических и химических факторов, влияющих на превращение, преобразуется в тепловое воздействие на вещество. При этом текущее изменение хода превращения, определяемое действием обратной связи, является откликом на изменения в т. пловом потоке, который формируется на поверхности образца. [c.76]

    Создатели -термогравиметрии назвали ее методом, освобож-даюп им исследователя от проблем тепло- и массопереноса [85]. Суть этих проблем в термическом анализе заключается в следу-ющ ем возможно ли однозначное отнесение экспериментальных зависимостей к характеристикам превращеш я, или, другими словами, возможно ли корректное разделение экспериментального проявления химического превращения от сопровождаюпщх его процессов тепло- и массопереноса. Обычно такие проблемы решаются с различным успехом специальной калибровкой и (или) математическим моделированием. [c.77]

    Временная координата в сложившейся практике -термогра-виметрии играет второстепенную роль. Ее использование носит эпизодический характер. Между тем совместное использование временной и температурной координат только подчеркивает и особенность, и необходимость каждой из них. Это относится как к анализу данных эксперимента, так и к проблеме расширения круга задач, решаемых -термогравиметрией. О температурной координате следует сказать, что она нри становлении и традиционном использовании метода служила надежным индикатором степени реалх1зации идеи квазиизотермичности. Но у температурной составляющей (одной из трех составляющих энергетического баланса) есть свойство, отличающее ее от двух других. Обратимся снова к рис. 64 и 69. [c.97]

    Вне рассмотрения осталось второе возможное применение -термогравиметрии исиользование ее для кинетических исследований. Упомянутый в книге метод термического анализа с постоянной скоростью разложения (GRTA) обладает определенными преимуществами при изучении кинетики процессов разложения. Метод GRTA оказывается более чувствительным к определению вида кинетической функции ири решении обратной задачи, а традиционный в неизотермической кинетике метод линейного нагрева может дать высокую точность в расчете кинетических параметров, если кинетическая функция определена независимо. [c.103]


Смотреть страницы где упоминается термин Анализ термогравиметрия: [c.339]    [c.33]    [c.345]    [c.34]    [c.339]    [c.44]    [c.138]    [c.565]    [c.22]    [c.360]    [c.193]    [c.467]    [c.4]    [c.5]    [c.102]   
Аналитическая химия (1980) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Термогравиметрия



© 2025 chem21.info Реклама на сайте