Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая газо-адсорбционная

    Так как единица массы адсорбента может обладать разной величиной удельной поверхности, то величина удельного удерживаемого объема (как и соответствующие величины константы изотермы адсорбции Генри Ка.с или Ка.р) в случае газо-адсорбционной хроматографии не является характеристикой природы системы данный компонент газовой смеси—поверхность адсорбента. Физико-химической константой, зависящей при данной температуре только от природы этой системы, будет абсолютная величина удерживаемого объема, т. е. отнесенная к единице поверхности твердого тела, а именно  [c.561]


    Газо-адсорбционная хроматография. ...........То же Газовая смесь [c.374]

    В газовой хроматографии подвижной фазой является газ. Неподвижной фазой может быть твердый адсорбент — газо-адсорбционная хроматография (ГАХ) или жидкость, нанесенная на поверхность твердого носителя — газожидкостная хроматография (ГЖХ). Компоненты смеси при разделении должны находиться в парообразном или газообразном состоянии. Методом газовой хроматографии можно разделять вещества с температурой кипения от —200 до 400 °С. [c.353]

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]

    Неподвижная фаза может быть твердым телом, обладающим адсорбционными свойствами (адсорбционная хроматография), или жидкостью, нанесенной для создания большей поверхности обмена на границе раздела фаз на гранулированный инертный материал — носитель (распределительная хроматография). Подвижная фаза может быть жидкостью, газом или паром. Соответственно, можно выделить четыре основных вида хроматографии жидкостно-адсорбционная, газо-адсорбционная, жидкостно-жидкостная и газожидкостная. Эта классификация была рекомендована и получила одобрение на Первом международном симпозиуме по газовой хроматографии, состоявшемся в 1956 г. в Лондоне. [c.13]


    В газо-адсорбционной хроматографии в качестве поглотителей применяют различные адсорбенты — высокодисперсные искусственные или природные тела с большой наружной (непористые) или внутренней (пористые) поверхностью, поглощающей газы и пары. Газ или пар. удерживаемый поверхностью твердого адсорбента, принято называть адсорбатом. Молекулы, извлекаемые из газовой фазы, или проникают внутрь адсорбента, или же остаются снаружи и удерживаются на его поверхности. Первое явление называется абсорбцией, второе — адсорбцией. Не всегда легко установить, находится ли газ внутри адсорбента или на его поверхности. Принято считать, что до тех пор, пока молекулы адсорбируемого газа не проникают в силовое поле, существующее между атомами, ионами или молекулами внутри твердого тела, газ находится на поверхности адсорбента. [c.163]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    Газовые лабораторные хроматографы серии Цвет-100 предназначены для качественного и количественного анализа смесей органических и неорганических веществ с температурой кипения до 450°С. Действие приборов основано на использовании методов газо-жндкостной и газо-адсорбционной хроматографии на набивных, микро-246 [c.246]

    ГАЗОВАЯ ХРОМАТОГРАФИЯ (ГАЗО-ЖИДКОСТНАЯ И ГАЗО АДСОРБЦИОННАЯ) [c.36]

    Газо-адсорбционная хроматография. Газовой смесью, состоящей из нескольких компонентов, насыщают верхний слой адсорбента, помещенного в колонку. Затем через колонку пропускают инертный газ-носитель. Вследствие повторения актов адсорбции — десорбции происходит полное разделение смеси на составные компоненты. [c.37]

    Одним из преимуществ газо-жидкостной хроматографии является то, что коэффициент Генри значительно больше изменяется при переходе от одного вещества к другому, чем в газо-адсорбционной, что обеспечивает лучшее разделение сложных смесей. Это обусловлено тем, что газ-носитель не растворяется в неподвижной фазе и не адсорбируется носителем. Коэффициент Генри для газа-носителя равняется нулю, поэтому, исходя из основного уравнения теории равновесной газовой хроматографии (см. стр. 45), линейная скорость перемещения газа-носителя (ио) будет равна  [c.49]

    Наряду с газо-адсорбционной хроматографией широко применяется также газо-жидкостная хроматография. В этом методе разделения газовых смесей на индивидуальные составные части заложен тот же основной принцип, который описан выше. Однако в качестве неподвижной фазы, на которой происходит поглощение вводимого в колонку газа, в данном случае применяются различные нелетучие жидкости. Для увеличения общей поверхности поглощения жидкий сорбент наносится на крупнопористый инертный носитель (диатомовый кирпич, трепел и др.), не обладающий адсорбционной активностью по отношению к компонентам анализируемой газовой смеси. [c.46]

    На газо-адсорбционном учебном хроматографе наглядно и достаточно легко можно провести разделение газовой смеси, состоящей из водорода, окиси углерода, метана и воздуха. [c.47]

    При применении методов газо-жидкостной и газо-адсорбционной хроматографии для препаративных целей возникает необходимость отделения примесей и выделения чистого газа (на. колонке) нэ значительно ббльших объемов пробы по сравнению с теми, с которыми имеют дело при хроматографическом анализе газовых смесей. [c.61]

    В настоящее время, несмотря на то что глубокая абсорбционная осушка начинает находить применение на ГПЗ и других объектах нефтяной и газовой промышленности, адсорбционный метод с помощью цеолитов считают наиболее перспективным и надежным при необходимости достижения низкой точки росы газа. Важное преимущество цеолитов состоит также в том, что они могут работать при повышенных температурах газовых потоков. [c.134]

    За последние голы получили широкое развитие хроматографические методы анализа сложных газовых смесей. Хроматографические методы начинают успешно применяться и для препаративных целей —для очистки и получения газов достаточно высокой степени чистоты. Наиболее перспективными в этой области являются (Методы газо-жидкостной и газо-адсорбционной хроматографии. [c.59]


    При анализе газов методами газовой хроматографии наибольшее распространение имеют методы газо-жидкостной и газо-адсорбционной хроматографии (юм. стр. 59). [c.85]

    Среди новых направлений в развитии газо-адсорбцион-ной хроматографии, обусловливающих расширение ее аналитических возможностей, следует отметить применение пористых полимерных сорбентов Л. 149—152]. В настоящее время для газовой хроматографии начинают применять пористые материалы на основе сополимеров стирола, этилстирола и дивинилбензола. [c.108]

    Во ВНИИ НП для анализа таких газов применяют метод газо-жидкостной хроматографии, с использованием полярных и неполярных жидких фаз, и газо-адсорбционной хроматог рафии с применением природных синтетических и модифицированных адсорбентов [П. Сочетание этих методов дает возможность анализировать газовые смеси, содержащие 20—25 компонентов, за 35—40 мин. Для анализа используется лабораторный хроматограф ХЛ-3 (с дифференциальным детектором по теплопроводности и полупроводниковыми термисторами в качестве чувствительных элементов мостовой схемы), серийно выпускаемый отечественной промышленностью [21. [c.79]

    Твердые вещества с удельной поверхностью 10-10 м /г могут применяться в качестве твердых носителей и адсорбентов. Наиболее подходящими для газовой хроматографии адсорбентами являются такие, у которых удельная поверхность колеблется в пределах 60-400 м /г. К ним относятся активные угли, силикагель, активный оксид алюминия, молекулярные сита и пористые полимеры. Данный вид твердых носителей используется в газо-адсорбционной хроматографии в качестве насадки. [c.46]

    Природа газа-носителя. В газовой хроматографии при небольших давлениях инертные газы-носители практически не адсорбируются, особенно в газо-жидкостной хроматографии. Поэтому природа газа-носителя практически не влияет на селективность разделения, за исключением некоторых случаев в газо-адсорбционной хроматографии при разделении газов на активных тонкопористых адсорбентах. [c.258]

    Газовая хроматография применяется для разделения смесей газообразных или легкоиспаряемых жидких и твердых веществ. Принцип метода подобен жидкостной хроматографии. Разделяемую смесь разбавляют газом-носителем (Н2, N2, Не) и вводят в адсорбционные колонны. Газ-носитель является одновременно растворителем и элюентом. В качестве сорбентов используют тонкие порошки силикатных материалов, которые могут быть чистыми (газо-адсорбцион-ная хроматография) или покрытыми пленкой нелетучей жидкости (газо-жидкостная хроматография). Используют также капилляры, покрытые внутри пленкой нелетучей жидкости (капиллярная хроматография). Газ-носитель постепенно десорбирует компоненты [c.18]

    Учитывая эти обстоятельства, мы решили провести исследование по применению методов газовой хроматографии для препаративного разделения хлоридов некоторых редких элементов и хлорида железа (И1). При этом в основу работы была положена газо-адсорбционная методика, поскольку, как известно, емкость сорбентов типа углей и силикагелей намного превышает таковую в газо-жидкостной хроматографии. [c.238]

    Неподвижная фаза при хроматографии может быть твердой и жидкой. В соответствии с этим газовую хроматографию делят на газо-адсорбционную (неподвижная фаза — твердый адсорбент) и газо-жидкостную (распределительную) хроматографию, когда поры твердого инертного носителя заполняют жидкостью (в процессе хроматографии происходит абсорбция газа жидкостью). Аналогично жидкостную хроматографию делят на жидкостно-адсорбционную (неподвижная фаза — твердый адсорбент) и жидкостножидкостную, (обе фазы — жидкие), [c.176]

    Твердая — адсорбент Газовая (газ-но- ситель) Газо-адсорбцион-ная, ГАХ Gas-Solid hromatography, QS Молекулярная, колоночная, программирование температуры [c.14]

    Газо-адсорбционная хроматография начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. А. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбционный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве аза-носителя — двуокись углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Д. А. Вяхиревым (независимо друг от друга). Метод был назван объемнохроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.83]

    В газо-адсорбционной хроматографии в качестве поглотителей применяют различные адсорбенты. Адсорбенты — это твердые тела, на поверхности которых поглощаются газы или пары. Газ или пар, удерживаемый поверхностью твердого адсорбента, принято называть адсорбатом. Газ или пар, приведенный в соприкосновение с твердым телом, с которого тщательно удалены газы, частично поглощается. Если поглощение идет при постоянном объеме, то давление в системе падает если давление поддерживается постоянным, то объем газа уменьшается. Молекулы, извлекаемые из газовой фазы, или проникают внутрь адсорбента, или же остаются снаружи и удерживаются на его поверхности. Первое явление называется абсорбцией, второе — адсорбцией. Не всегда легко установить, находится ли газ внутри адсорбента или на его поверхности. Большинство адсорбентов — высокопористые тела с исключительно большой внутренней поверхностью. Внешняя поверхность, даже измеренная с помощью совершенных микроскопов, составляет лишь небольшук) часть громадной общей поверхности. Однако до тех пор, пока молекулы адсорбируемого газа не проникают в силовое поле, существующее между атомами или ионами, или молекулами внутри твердого тела, считается, что газ находится снаружи. [c.83]

    Акгивированные угли используют в газо-адсорбционной хроматографии для анализа низкокипящих неорганических газов и легких углеводородов, для разделения водорода, аргона, ксенона, метана, двуокиси углерода, углеводородов до 4 в порядке увеличения числа углеродных атомов. В табл. 3 приведена техническая характеристика активированных углей, применяемых в газовой хроматографии. Наиболее широкое применение в ГАХ нашли угли сарановые, АГ и СКТ. [c.85]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    Газовый хроматограф Цвет-1-64 представляет собой лабораторный прибор, изготовленный в обыкновенном (не взрывозащищен-ном) исполнении. Предназначен он для анализа смеси органических (с концентрацией от 1 10" до 10%) и неорганических (от ЫО" до 100%) веш,еств, кипящих до 350—400° С и не содержащих агрессивных примесей, способных разрушать стальные детали прибора. Он состоит из трех блоков 1) датчика, состоящего из термостата, катарометра, детектора пламенно-ионизационного (ДИП), испарителя жидкой пробы, газового крана-дозатора 2) блока управления БУ-2, состоящего из панели подготовки газов, усилителя ПВ-2М для ДИП, терморегулятора, блока питания детектора ДИП, блока питания катарометра 3) автоматического самопишущего потенциометра ЭПП-09. Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии на набивных (аналитических), микронабивных и капиллярных колонках в изотермическом режиме. [c.170]

    В зависимости от природы применяемых сорбентов и разделяемых соединений в препаративной газовой хроматографии, как и в аналитической, применимы и газо-адсорбционный и газо-жидкост-ной (распределительный) варианты. Аналогичным образом применимы не только проявительный, т. е. элюентный, способ хроматографического разделения, но и фронтальный, вытеснительный, тепловытеснительный, хроматермографический, теплодинамический и др. (см. гл. I). Однако широкое применение пока получил лишь проявительный способ. [c.213]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]

    Адсорбционная газовая хроматография основана на использовании различия в адсорбируемостп газов и паров. В зависимости от основного фактора, определяющего разделение, различают следующие виды газовой. хроматографии газо-жидкостную и газо-адсорбционную. [c.29]

    В зависимости от агрегатного состояния подвижной и неподвижной фаз различают газо-адсорбционную, газо-жидкостную, жидкостно-адсорбционную и жидкостно-жидкостную хроматографию. В газоадсорбционной хроматографии подвижной фазой служит газ, называемый газом-носителем, а неподвижной фазой — твердый адсорбент. В качестве адсорбента в газовой хроматографии используют активированные угли, силикагели, отась алюминия и другие пористые вещества с сильно развитой поверхностью. Так, величина удельной поверхности активированных углей составляет 400—900 м /г. В последнее время в качестве адсорбента начали широко использовать искусственные цеолиты (молекулярные оита) — кристаллы, состоящие из окислов кремния, алюминия и одно- и двухвалентного метал- [c.93]

    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    Стремление вещества к растеканию не ограничивается образованием насыщенного, сплошного юнo лoя, но при наличии свободной поверхности может продолжаться до образования все более разбавленных слоев, вплоть до газового состояния пленки, подобного газовому состоянию адсорбционного слоя при очень низких концентрациях (стр. 83). Подобно тому как обычный трехмерный газ стремится к неограниченному расширению, оказывая давление (в дин/см ) на ограничивающую поверхность, так и двухмерная пленка в своем стремлении к расширению оказывает боковое давление на ограничивающую линию однако это давление, как и поверхностное натяжение, измеряется в дин1см (поэтому и в уравнении IV. 7 величина понижения поверхностного натяжения Аз играла роль бокового давления, с которым она по существу идентична). [c.88]

    ЖГАХ — жидкостно-газо-адсорбционная хроматография ЖГХ — жидкостно-газовая хроматография ЖЖХ — жидкостно-жидкостная хроматография [c.94]

    Поскольку малолетучие соединения группы В и /), по классификации Киселева [2], сильно взаимодействуют с поверхностью кремнезема, исследование этих взаимодействий с цомощью прямой газо-адсорбционной хроматографии затруднено, так как требует применения весьма высоких температур колонок. Однако указанные исследования могут быть выполнены хроматографическим методом при достаточно низких температурах с использованием адсорбционно-распределительной газовой хроматографии. При этом необходимо принять во внимание как адсорбцию на поверхности газ — пленка, так и адсорбцию на поверхности пленка — твердое тело. Нами рассмотрен механизм взаимодействия хроматографируемого вещества с активными центрами твердого носителя в адсорбционнораспределительной хроматографии. Получено следующее термодинамическое уравнение для адсорбционно-распределительной газовой хроматографии [1, 3]  [c.465]


Библиография для Газовая газо-адсорбционная: [c.333]   
Смотреть страницы где упоминается термин Газовая газо-адсорбционная: [c.4]    [c.9]    [c.14]    [c.118]    [c.56]    [c.309]   
Хроматография неорганических веществ (1986) -- [ c.63 ]




ПОИСК







© 2025 chem21.info Реклама на сайте