Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильная группа в реакции Гриньяра

    Реакция. Нуклеофильное присоединение магнийорганических соединений по карбонильной группе (реакция Гриньяра [70]). Получение третичного спирта с последующим 1,2-элиминированием воды (дегидратация, ср. с. 51). [c.232]

    При проведении реакции карбонильное соединение постепенно вводят к заранее приготовленному реактиву Гриньяра, и, следовательно, в реакционной массе всегда имеется избыток последнего, поэтому есть основания предполагать, что на первой стадии реакции взаимодействует димер реактива Гриньяра (см. разд. 4.2). С одной стороны, с атомом углерода карбонильной группы реагирует как нуклеофил один из радикалов К, а с другой — по атому кислорода этой же карбонильной группы, на котором сосредоточена избыточная электронная плотность, координируется атом магния, имеющий дефицит электронной плотности. Это приводит к дополнительному увеличению положительного заряда иа атакуемом атоме углерода карбонильной группы. [c.278]


    Вероятно, что на первой стадии взаимодействия всех приведенных выше производных кислот с реактивом Гриньяра происходит реакция нуклеофильного присоединения по карбонильной группе  [c.295]

    При избытке реактива Гриньяра идет со значительно меньшей скоростью реакция присоединения по карбонильным группам. [c.299]

    В случае подобного механизма можно ожидать протекания побочной реакции, в процессе которой реактив Гриньяра соответствующего строения (а именно имеющий водород у р-угле-родного атома) превращался бы в олефин. При этом должен был бы происходить перенос гидрид-иона на положительно заряженный атом углерода карбонильной группы  [c.213]

    Карбанионы, так же как и другие частицы, являющиеся источниками отрицательно заряженного углерода, принимают участие в разнообразных реакциях присоединения, многие из которых являются реакциями присоединения по карбонильной группе. Из них ранее уже рассматривались присоединение реактивов Гриньяра и ацетиленид-иона к карбонильным соединениям (см. стр. 212, 214), альдольная конденсация (см. стр. 214), реакция Перкина (см. стр. 218), сложноэфирная конденсация Клайзена [c.264]

    Побочные процессы при реакциях Гриньяра наблюдаются в особенности тогда, когда по пространственным причинам невозможно образование циклического переходного состояния I [схема (Г.7.180)]. Если карбонильное соединение или реактив Гриньяра имеют объемистые заместители, то в циклическом комплексе находится место только для одной молекулы магнийорганического соединения. В этих случаях на карбонильную группу часто переносится не алкил, а меньший по объему гидридный ион. В результате происходит восстановление карбонильной груплы, а магнийорганическое соединение превращается в олефин (гриньяровское восстановление)  [c.197]

    Ацетиленовые реактивы Гриньяра используют в реакциях присоединения к карбонильной группе чаще, чем ацетилиды натрия или лития, вероятно, потому, что они имеют менее основной характер и обладают тенденцией к образованию координационных связей с атомом кислорода карбонильной группы 14]. [c.190]

    На данном этапе мы рассмотрим еще взаимодействие реактива Гриньяра со сложным эфиром (L = 0R). Начальной стадией этой реакции также является присоединение. Алкильный фрагмент реактива Гриньяра присоединяется к углеродному атому карбонильной группы  [c.394]

    Следовало бы ожидать, что в результате делокализации заряда резонансом переходное состояние, приводящее к атаке связи С=С, будет устойчивее переходного состояния, которое обусловливает атаку атома углерода карбонильной группы. Чаще всего это действительно так, т. е. присоединение идет предпочтительно по связи С=С. Тем не менее под действием очень, активных анионов, например реактивов Гриньяра, образуется довольно-большое количество продукта прямого присоединения . Впрочем, можпо-добиться сопряженного присоединения и для реактивов Гриньяра для этого достаточно проводить реакцию в присутствии одновалентной меди. [c.41]


    Реакция. 1. Синтез вторичного спирта нуклеофильным присоединением металлоорганического соединения по карбонильной группе альдегида (реакция Гриньяра применение магнийорганических соединений). [c.513]

    Реакция. Образование третичного спирта присоединением реактива Гриньяра к сложному эфиру (присоединение по карбонильной группе). [c.527]

    Реакция. Нуклеофильное присоединение матнийорганического соединения по карбонильной группе (реакция Гриньяра [70]). Синтез третичного спирта из кетона. [c.233]

    При действии реактивов 1 риньяра на сложные эфиры ири-соединение к карбонильной группе (реакция 16-30) обычно сопровождается замещением ОК на К" (т. 2, реакция 10-106), так что получаются третичные сиирты, две группы К в которых одинаковы. Формиаты приводят к вторичным спиртам, а карбонаты дают третичные сиирты, в которых одинаковы все три группы К (Et0)2 = 0 + RMgX Rз 0MgX. Ацилгалогениды и ангидриды ведут себя аналогично, хотя такие субстраты используются значительно реже [349]. Возможно протекание различных побочных реакций, особенно если производное карбоновой кислоты или реактив Гриньяра имеют разветвленную структуру к таким побочным реакциям относятся енолизация, восстановление (для ацилгалогенидов, но не для сложных эфиров), конденсация и расп(епление, но наиболее важным является простое замещение (т. 2, реакция 10-106), причем в некоторых случаях эту реакцию удается сделать доминирующей. Триметилалюминий, который исчерпывающе метилирует кетоны (реакция 16-30), также исчерпывающе метилирует карбоновые кислоты, давая 7 рет-бутилпроизводные [350] (см. также т. 2, реакцию 10-91)  [c.374]

    Одна из самых важных реакций с использованием карбонильных соединений как электрофи.тов — реакция Гриньяра — присоединение магнийоргапических соединений ио карбонильной группе. Ре.зультат этих реакций — образование связи С—С и превращение карбонильной функции в спнртоиую. [c.85]

    Восстановление карбонильных соединений реактивами Гриньяра применяют при проведении частичного асимметрического синтеза. Если использовать в реакции Гриньяра несимметричные кетоны, то при их восстановлении обрм-зуются спирты с асимметрическим атомом углерода. Естественно, что при этом получается рацемическая смесь обоих антиподов. Если же использовать оптически активный реактив Гриньяра, например (37), то образуется не рацемат, а смесь, содержащая небольшой избыток одного из стереоизомеров. Лучшие результаты были получены для кетонов, у которых один из радикалои сильно разветвлен (например, для пинаколина). При действии же на пинаколин оптически активным реактивом Гриньяра (38), отличающимся от предыдущего только на одну метиленовую группу, образуется рацемическая смесь антиподов. [c.284]

    Реакции с производными карбоновых кислот. Аналогично карбонильной группе в альдегидах и кетонах, в производных карбоновых кислот R OY группа OY (Y = Hal, O OR, OR, NR2. ОМ) способна к присоединению реактивов Гриньяра, Реакционная способность производных карбоновых кислот зависит от величины частичного положительного заряда на атоме углерода карбонильной группы (которая в свою очередь зависит от М- и /-эффектов группы У) и уменьшается в ряду  [c.293]

    Первоначально идентичность УФ-спектров а- и -гидрокси-пйридинов со спектрами Л -метилпиридинов, которым отвечает единственная структура, позволила предположить, что в отличие от а- и у-аминопиридинов а- и у-гидроксипиридинам отвечают формулы (110) и (111). Однако впоследствии было показано, что реальным а- и у-гидроксипиридинам несвойственны реакции, характерные для карбонильной группы (они не реагируют с фенилгидразином и не присоединяют реактивов Гриньяра), а также для вторичной аминогруппы (они с трудом реагируют с СНз1 и не образуют солей четвертичных аммониевых оснований). На этом основании соединение (НО) следует скорее относить к амидам кислот, а соединение (Ш)—к ви-нилогам амидов кислот. В обоих соединениях взаимное влияние функциональных групп настолько велико, что обе они утрачивают характерные для каждой из них свойства. [c.549]

    О большей активности карбонильной группы по сравнению с активированной кратной связью в реакции с нуклеофилами свидетельствует тот факт, что при взаимодействии a, -Henpe-дельных альдегидов с реактивами Гриньяра образуются исключительно продукты присоединения по карбонильной группе [c.553]

    Первой стадией реакции реактива Гриньяра с карбонильными соединениями является координация атома магния с атомом кислорода карбонильной группы с образованием промежуточного комплекса. Затем происходит миграция алкильной группы в виде аниона или радикала. При этом возможен как гетеролитический, [c.219]

    Как правило, заместители у карбонильной группы способствуют 1,4-присоединению, в то время как заместители у двойной связи приводят к увеличению доли 1,2-присоединения. В большинстве случаев получаются оба продукта, но из а,р-ненасыщенных альдегидов при обработке реактивами Гриньяра почти всегда образуются исключительно продукты 1,2-присоединения. Однако долю реакции 1,4-присоединения реактивов Гриньяра можно увеличить, используя в качестве катализатора ион меди [например, такие соединения, как u I, u (ОАс) 2] [378]. Вере- [c.202]


    Реактивы Гриньяра присоединяются к одной связи С = 0 СОг так же, как к карбонильной группе альдегида или кетона [355]. При этом, конечно, образуется соль карбоновой кислоты. Реакцию обычно проводят, выливая раствор реактива Гриньяра на сухой лед. Таким путем получены многие карбоновые кислоты, и эта реакция наряду с последовательностью реакций 10-103 и 16-5, а также с реакцией 18-9 является важным методом увеличения длины углеродной цени на один атом. А поскольку меченый СО2 коммерчески доступен, то это и хороший метод синтеза карбоновых кислот с меченой карбоксильной группой. Применялись и другие металлоорганические соединения (RLi, RNa, R aX и т. п.), но значительно реже. Образование соли карбоновой кислоты при прибавлении СО2 к реак- [c.375]

    Если реакция с реактивом Гриньяра на первой стадии включает атаку одной молекулы реагента по карбонильному атому кислорода, то можно ожидать, что введение в раствор более сильной кислоты Льюиса ускорит реакцию, поскольку именно эта кислота будет преимущественно включаться в промежуточную структуру и наводить больший положительный заряд на атом углерода карбонильной группы. И действительно, добавление М2Вгг в ряде случаев удваивдло выход третичных спиртов при взаимодействии кетонов с реактива.ми Гриньяра. [c.213]

    Взаимодействие с реактивами Гриньяра и другими металлоорганическими реагентами. Реактивы Гриньяра формально можно рассматривать как потенциальные источники электроотрицательного углерода, хотя мало вероятно, что эти реагенты в процессе реакции непосредственно образуют карбанионы. В действительности в реакцию мржет вовлекаться более чем одна молекула реагента, на что уже.4гказывалось при обсуждении вопроса о присоединении этих производных к карбонильным группам (см. стр. 212). [c.266]

    Одна из важнейших реакций с использованием карбонильных соединений как электрофилов — это реакция Гриньяра, присоединение магнийорганических производных по карбонильной группе. Чистым итогом этого превращения является образование новой связи С-С с одновременным превращением карбонильной функции в спиртовую [9а] схема 2.22). Общеизвестна широкая применимость этой реакции к самьш разным типам карбонильных соединений, Однако также известно, что из-за высокой основности магнийорганических реагентов в своем классическом виде она неприменима для легко енолизумых производных. Так, например, до недавнего времени совершенно невозможно было провести реакцию Гриньяра с ацетоуксусным эфиром, а с такими кетонами, как показанный на схсме тетралон (69), выход продукта присоединен по карбонильной группе мог оказаться неприемлемо низким. [c.104]

    Другое важное изогипсическос препращенис аллильных производных — элиминирование группы Н-Х, приводящее к 1,3-диенам. Помимо того, что многие представители этой группы соединений практически важны как мономеры, 1,3-диены занимают особое место в органическом синтезе как субстраты для реакции Дильса—А1ьдера, Один из самых обычных путей синтеза этих производных основан на последовательности превращений, а ю-чающих стадию реакции Гриньяра карбонильных соединений с винильными производными с последующим элиминированием воды (схема 2.55) (иногда предпочтительнее сначала превратить аллильный спирт в соответствующее ацетоксипроизводное). [c.142]

    Присоединение к бензо- и нафтохиншам происходит также при действии ряда других реагентов типа НА, в том числе цианистого водорода, меркаптанов, бензолсульфиновой кислоты, бензола в при-сутствйи хлористого алюминия, малонового, циануксусного и ацетоук сусного эфиров. Реактивы Гриньяра реагируют с замещенными и незамещенными хинонами с образованием смеси продуктов 1,4-присоеди-иения, присоединения по карбонильной группе и продуктов восстановления. Особый случай представляет реакция с азотистоводородной кислотой Н№ здесь первоначальное присоединение сопровождается внутримолекулярным окислением—восстановлением с миграцией водородных атомов гидрохинона к азидной группе, которая претерпевает восста-но1Вительное расщепление  [c.422]

    Реакция карбонильной группы с соединением. Гриньяра представляет o6ottfjl восстановление с увеличением углеродного скелета , причем углеводород RH, леже щий в основе гриньяровского соединения RMgX, присоединяется к карбонильна группе  [c.720]

    Реакция Виттига кратко обсуждена в гл. 13, разд. Г.З более подробно она рассмотрена в обзорах 16,, 7]. Эта реакция обладает рядом преимуществ при синтезе алкенов кислородный атом карбонильной группы замещается на этиленовую группу без всякой изомеризации мягкие щелочные условия проведения реакции дают возможность получать такие нестойкие олефины, как каротиноиды, метилензамещснные стероиды и другие природные продукты. По существу это единственный надежный метод для превращения циклического кетон а в соответственный з/гзо-циклоолефин. В этом случае синтез Гриньяра (разд. В,6) практически дает только энйо-цик-лический изомер. Недостатки метода — высокая стоимость реагента н необходимость введения объемистого заместителя, который не входит в состав конечного продукта. [c.166]

    Подобные же реакции имеют место, когда реактив Гриньяра или литийорганическое соединение атакуют карбонильную группу, связанную с потенциальной уходящей группой (например, С1, Вг, ОСН3, О—СОСН3), В результате реакций такого типа образуются третичные спирты с хорошими выходами. [c.393]

    К сожалению, в данном случае избыток реактива Гриньяра также не способствует желательному направлению реакции, напротив, выход желаемого алкоголята понижается. Сложноэфирная группа образовавшегося ал-коголята может снова реагировать с реактивом Гриньяра. Более того, побочный продукт, написанный выше, также имеет две карбонильные группы, способные реагировать с избытком реактива Гриньяра. Эти нежелательные побочные процессы представлены ниже  [c.398]

    Синтез необходимых меченных изотопами соединений в общем основан на обычных химических реакциях (исключая введение трития по Вильцбаху [25]). Так, например, введение дейтерия может быть осуществлено, в частности, дейтеролизом реактивов Гриньяра или восстановлением галогеналканов трибутилоловогидридом (0-66, О-бв), а карбонильных групп-меченым алюмогидридом лития, борогидридом натрия или цианоборогидридом натрия. [c.445]


Смотреть страницы где упоминается термин Карбонильная группа в реакции Гриньяра: [c.233]    [c.90]    [c.133]    [c.216]    [c.283]    [c.365]    [c.110]    [c.190]    [c.722]    [c.722]    [c.722]    [c.195]    [c.260]    [c.27]    [c.1366]    [c.158]    [c.161]    [c.371]   
Смотреть главы в:

Химические основы работы двигателя Сборник 1 -> Карбонильная группа в реакции Гриньяра


Химические основы работы двигателя Сборник 1 (1948) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Гриньяр

Гриньяра реакция группа

Гриньяра реакция реакции

Карбонильная группа

Карбонильные группы реакции

Реакции Гриньяра

группа реакции



© 2025 chem21.info Реклама на сайте