Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффективная энергия активации

    Изучена [101] каталитическая активность в реакциях гидрирования бензола и этилена граней монокристаллов никеля и кристаллографически хорошо определенных частиц нанесенного Ni-катализатора диаметром 5,0 нм. Химически полированные кристаллы никеля, ориентированные по граням (110), (111), (100) очищали последовательным окислением и восстановлением прн 495 и 439°С. Показано, что каталитическая активность грани (111) несколько выше, чем для других граней. Активность ориентированного по грани (111) нанесенного катализатора несколько меньше, чем для случайно ориентированного. Эффективная энергия активации равна 46 кДж/моль. На основании этих данных был сделан вывод [101], что реакция гидрирования этилена более [c.55]


    В жидкой фазе стадия передачи энергии внутренним степеням свободы молекулы практически не зависит от температуры, поскольку частоты меж- и внутримолекулярных колебаний в жидкости остаются постоянными при изменении температуры. Температура влияет на образование ассоциатов и на перемещение ассоциатов, содержащих возбужденные молекулы. Зарождение цепей происходит вследствие реакций между предварительно возбужденными молекулами. По этой причине эффективная энергия активации реакций зарождения цепей по гомогенному механизму в жидкой фазе оказывается меньше, чем в газовой, на величину энергии возбуждения молекулы. [c.30]

    Влияния карбоновых кислот на окисление топлив не обнаружено, что, по-видимому, объясняется близкими значениями эффективной энергии активации окисления кислот (130 кДж/моль) и углеводородов топлива. [c.50]

    Подставляя в эти уравнения значения (3.45) и (3.46), можно получить зависимость, связывающую Тв, То и эффективную энергию активации процесса самовоспламенения (Б)  [c.130]

    Эффективная энергия активации окисления капель топлива воздухом не превышает 12,6—16,7 кДж/моль. Образующиеся при этом продукты окисления — гидропероксиды, альдегиды, ответственные за реакции разветвления цепей, после испарения топлива инициируют реакции, приводящие к самовоспламенению. [c.136]

    Клк поставить опыт, чтобы определить эффективную энергию активации процесса растворения  [c.440]

    Из опытов при разных температурах вычисляют эффективную энергию активации Еа. [c.59]

    Определение зависимости коэффициента Л от обратной температуры позволяет ио уравнению Аррениуса оценить значение эффективной энергии активации укрупнения твердых частиц при окислении топлив растворенным кислородом. [c.258]

    Неравновесные реакции (слабая неравновесность). Макроскопическая скорость реакции много меньше макроскопической скорости всех релаксационных процессов. Однако макроскопический коэффициент скорости (см. (2.57)) есть среднее из всех микроскопических коэффициентов скорости молекул, находящихся на разных уровнях, и может случиться так, что микроскопические скорости реакций для некоторых квантовых состояний окажутся больше микроскопических скоростей релаксации. В этом случае Макроскопическое уравнение для скорости реакции, содержащее концентрации, построить все же можно, однако оно не будет иметь обычной Аррениусовой формы (1.77). Объясняется это тем, что макроскопическая скорость определяется лишь скоростью активации, а поскольку вблизи порога активации имеет место обеднение высокоэнергетической части распределения, то средняя энергия активных молекул (т. е. молекул, имеющих запас энергии выше энергии активации Е > Ед и в принципе способных к реакции) меньше средней энергии активных молекул для случая равновесного распределения Е < Е . Это вызывает повышение эффективной энергии активации, причем величина повышения определяется механизмом активации (сильные столкновения либо многоступенчатая активация — дезактивация). [c.97]


    Е — эффективная энергия активации, кДж/кмоль  [c.139]

    Описанное выше соотношение между скоростью химической коррозии металлов и температурой может быть осложнено или нарушено, если с изменением температуры изменяется структура или другие свойства металла или образующейся на нем пленки продуктов коррозии. Довольно часто прямая lg к (или lg г/) = = / (1/Т) имеет изломы (рис. 84 и 85) и ее отдельным участкам соответствуют разные значения эффективной энергии активации Q, характеризующие зависимость скорости процесса от температуры и обусловленные качественными изменениями в металле, в образующейся пленке продуктов коррозии и в механизме протекания процесса. [c.124]

    Эффективная энергия активации при концентрационной поляризации, т. е. при диффузионном контроле процесса, представляет собой энергию активации вязкого течения раствора, которая для разбавленных водных растворов близка к энергии активации вязкости воды (табл. 50). [c.353]

    Для электродных процессов определение эффективной энергии активации процесса осложняется тем, что Q = (AV). Поэтому [c.353]

    Влияние температуры на электрохимические процессы успешно используется С. В. Горбачевым и его школой как кинетический метод исследования природы поляризации этих процессов. Зная эффективную энергию активации процесса, можно судить о природе стадии, определяющей скорость электрохимического процесса. [c.355]

    При испытании стали марки СтЗ при постоянной 80%-ной относительной влажности воздуха наблюдался экспоненциальный рост скорости коррозии с увеличением температуры (рис. 273). Вычисленное из опытных данных значение эффективной энергии активации процесса (30 ккал/г-атом) соответствует электрохимической поляризации и подтверждает отсутствие диффузионного контроля в условиях влажной атмосферной коррозии. [c.383]

    Вычисленные из данных рис. 279 значения эффективной энергии активации процесса коррозии железа в различных водонасыщенных грунтах и почвах (6 ккал/моль для кислой почвы — гу- [c.388]

    Энергия активации, вычисленная по (193.7), называется наблюдаемой или эффективной энергией активации. Величины А и в уравнении Аррениуса мало изменяются с температурой. В небольшом температурном интервале они практически постоянны. В подавляющем большинстве процессов > О (табл. 29). Однако имеются реакции, для которых а 5 О и даже меньше нуля. При этом правило Вант-Гоффа не оправдывается. [c.529]

    Эффективная энергия активации Е при таком подходе отождествляется с энергией процесса активации iS.ll. Высказав идею о роли активного состояния молекулы, Аррениус не подошел к понятию переходного состояния. Исторически первым направлением в развитии взглядов Аррениуса была разработка теории активных столкновений на базе молекулярно-кинетических представлений. Рассмотрим одностороннюю адиабатическую реакцию второго порядка, протекающую в газовой фазе. Дополним положения Аррениуса еще одним. Будем считать активными такие столкновения, в которых суммарная энергия сталкивающихся, энергетически возбужденных молекул А и Аг равна или больше Е . Из молекулярно-кинетической теории следует, что общее число столкновений молекул А, и Аа в единице объема за единицу времени гп определяется уравнением [c.564]

    Множитель А в уравнении Аррениуса согласно теории активных столкновений равен числу столкновений в одном литре за 1 с (выраженному в молях) при = Са = 1 моль-л" . Множитель определяет долю активных столкновений. Произведение называется сечением столкновения и имеет порядок 10 — 10 . Относительная скорость движения молекул зависит от Т, и т . При температурах, близких к нормальным, она имеет порядок 10 см-с" . Следовательно, множитель А в уравнении Аррениуса для бимолекулярных реакций должен иметь порядок 10 — 10 л/(моль-с). Так как множитель А зависит от Т (211.15), то энергия Е не будет точно равна эффективной энергии активации, определяемой по уравнению Аррениуса. Прологарифмировав (211.14), получим [c.566]

    Так как АЯ м < О, то в результате хемосорбции энергия активации процесса существенно понижается. Из уравнений (229.16) и (229.17) получим выражение для эффективной энергии активации [c.653]

    Таким образом, цепной процесс распада этана описывается кинетическим уравнением первого порядка. Эффективная энергия активации равна  [c.53]

    В этом случае реакция имеет порядок /г- Эффективная энергия активации равна  [c.54]

    Эффективная энергия активации  [c.54]

    Энергия активации такой реакции около 29 кДж/моль (7 ккал/моль). Реакции радикалов с углеводородами имеют энергию активации 29—42 кДж/моль (7—10 ккал/моль), следовательно, эффективная энергия активации термического разложения нефтяной фракции должна быть порядка  [c.86]

    Так как рекомбинация радикалов проходит с энергией активации, равной нулю, эффективная энергия активации составляет  [c.113]

    Эффективная энергия активации процесса формирования композиционного материала определялась по уравнению Аррениуса (табл. 3). Энергия активации растет с увеличением доли полимерного компонента. [c.110]


    На рис. 3.16 приведены типичные результаты исследований самовоспламенения распыленных жидких топлив методом бомбы. Излом в зависимости Igx —IIT свидетельствует об изменении механизма самовоспламенения топлива в низко- и высокотемпературной областях. Это различие подтверждается результатами определений эффективной энергии активации процесса, которая для низкотемпературной ветви равна 146 кДж/моль (цетен) и 209 кДж/моль (бензол), а для высокотемпературной ветви равна 26,8 кДж/моль (бензол, цетен). [c.136]

    Полученные результаты допускают различную интерпретацию. Часто существование излома и низкое значение эффективной энергии активации процесса в области высоких температур рассматривают как доказательство лимитирующего влияния испарения топлива. Однако при этом не учитывается, что в случае лимитирующего влияния испарения эффективная энергия активации процесса в высокотемпературной области для бензола и цетена должна быть различной, равной их теплотам испарения (30,75 и 51,10 кДж/моль соответственно), чего не наблюдается в опыте. Кроме того, значения IgXi при постоянной температуре для легко испаряющегося бензола (т. кип. 80,1 °С) должны располагаться ниже, чем для трудно испаряющегося цетена (т. кип. 274 °С), чего также не наблюдается в опыте. Нельзя объяснить существование излома и тем, что в области низких температур преобладает гетерогенный (пристеночный) механизм самовоспламенения [155]. В этом случае температура, при которой наблюдается излом, для трудно испаряющегося цетена должна быть выше, чем для бензола. Опыт свидетельствует об обратном. Причину излома зависимости IgXj—1/Т можно объяснить различием механизма газо- и жидкофазного окисления топлив, аномально высокой скоростью окисления капель топлива. [c.136]

    При т- сопз1 Гв является функцией эффективной энергии активации и определяется главным образом реакционной способностью смеси. Например, Гв н-гептана и изооктана в двигателе при скорости 2000 об/мин оказались равными соответственно 775 и 1020°С. [c.139]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах. [c.357]

    Здесь уравнения (4.62)—(4.66) описывают средние скорости изменения концентраций инициатора, радикалов, мономеров и суммарной степени превращения в частицах дисперсной фазы. Уравнение (4.67) описывает нестационарный перенос тепла от единичного включения к сплошной фазе. Уравнения теплового баланса (4.68)—(4.69) для реактора и рубашки составлены при допущении полного перемепшвания сплошной фазы в реакторе и теплоносителя в рубашке. Уравнение БСА (4.70) характеризует изменение в течение процесса функции распределения частиц дисперсной фазы по массам р (М, 1). В уравнениях (4.62)—(4.70) введены следующие обозначения / ( г) — эффективность инициирования X — суммарная степень превращения мономеров АЯ — теплота полимеризации — эффективная энергия активации полимеризации 2 — коэффициент теплопроводности гранул р . — плотность смеси — теплоемкость смеси — коэффициент теплоотдачи от поверхности гранулы к сплошной среде Оои сво — начальные концентрации мономеров кр (х) — эффективный коэффициент теплопередачи — поверхность теплообмена между реагирующей средой и теплоносителем, Ут — объем теплоносителя в рубашке Гу, и Тт — температура теплоносителя на входе в рубашку и в рубашке соответственно Qт— объемный расход теплоносителя V — объем смеси в реакторе — объем смеси [c.275]

    Порядок цепных реакций по отдельным компонентам и эффективную константу скорости можно определить по данным кинетики накопления прсдуктов или по расходованию исходных веществ. Эффективная константа представляет собой комбинацию константы скоростей зарождер ия, продолжения и обрыва цепей. Зависимость эффективной константы скорости от температуры описывается уравнением Аррениуса. При этом для линейного обрыва цепей измеряемая эффективная энергия активации определяется по уравнению [c.389]

    Согласно (39.6) период индукции в основном определяется величиной Ф, т. е. удельной скоростью разветвляющего процесса Н Н- Oj = ОН + О. Поэтому 1п т приближенно может быть представлен лин( Йной функцией величины 1/2 1п т = а + EJRT. Обнаруженный Солоухиным и Ван Тиг-геленом [529] излом прямой 1п т—1/Г при 2500 К в случге реакции Нз с NaO истолкован ими как переход от низкотемпературной области (Г с 2500 К), когда скорость реакции определяется разветвлением цепей (эффективная энергия активации эфф = 22 ккал), к области Г 2500 К, когда определяющей является скорость зарождения цепей ( афф = СО кка.г). [c.218]


Смотреть страницы где упоминается термин Эффективная энергия активации: [c.128]    [c.136]    [c.137]    [c.142]    [c.342]    [c.403]    [c.353]    [c.354]    [c.89]    [c.228]    [c.239]    [c.178]    [c.108]    [c.28]    [c.56]    [c.85]    [c.119]   
Кинетический метод в синтезе полимеров (1973) -- [ c.23 , c.63 , c.66 ]

Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия активации

Энергия эффективная



© 2025 chem21.info Реклама на сайте