Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы метод определения

    При изучении гидратации адсорбционных слоев на поверхности латексных частиц методом определения относительной вязкости установили, что /го составляет 2,0-5,0 нм. Аналогичная методика с использованием нефелометрии позволила Р. Э. Нейману с сотрудниками определить порог коагуляции для ряда латексов и в точке минимума вязкости также оценить эффективную толщину гидратных оболочек (3,0—6,5 нм). Выявлено, что введение электролита приводит к существенному утонь-шению гидратных прослоек, что, по-видимому, способствует нарушению стабильности латексов. [c.11]


    Величины [X у изученных нами коллоидных частиц хорошо согласуются с представлением о том, что природа жесткого дипольного момента частицы связана с униполярной ориентацией полярных молекул дисперсионной среды (в данном случае — воды), адсорбированных на поверхности частицы. Если предположить, что адсорбированная мономолекулярная пленка полярных молекул представляет собой единый домен, то можно оцепить угол ф, составляемый осями диполей отдельных полярных молекул с поверхностью частицы. Метод определения угла ф описан в работе [4]. В табл. 2 приведены экспериментально полученные значения величин жестких диполей и вычисленные по ним значения углов ф для всех исследованных нами коллоидных частиц. Углы ф вычислены в двух вариантах  [c.92]

    Существует много фотометрических методов определения циркония. При проведении реакций необ.ходимо всегда учитывать ионное состояние циркония (IV) в водных растворах, который благодаря высокому заряду и малому ионному радиусу легко гидролизуется и образует полимерные частицы. Для предотвращений этих процессов все реакции проводят в кислой среде. [c.489]

    И если при этом первая частица — электрон, а вторая — молекула, то т1<Ст2 и, следовательно, при неупругом ударе р=1, т. е. вся энергия электрона может целиком перейти в энергию электронного возбуждения атома или молекулы. Опыт показывает, что такой переход подчинен квантовым законам. Он возможен только тогда, когда энергия ударяющего электрона равна той энергии, которая необходима для перевода электрона в молекуле из заданного в любое другое состояние, разрешенное квантовыми условиями отбора. Столкновения между электронами и атомами или молекулами, которые ведут к возбуждению атомов или молекул за счет кинетической энергии электронов, называются ударами первого рода. Франк и Герц исследовали столкновения электронов с атомами и на основании результатов исследований разработали удобные методы определения резонансных, критических и ионизационных потенциалов атомов. [c.75]

Рис. 93. Границы размеров частиц дисперсных систем и применения оптических методов определения дисперсности Рис. 93. Границы <a href="/info/923528">размеров частиц дисперсных</a> систем и применения <a href="/info/155163">оптических методов определения</a> дисперсности

    Если метод определения заключается в образовании осадка, то тщательное перемешивание приведет к тому, что заметить его будет довольно трудно. В этом случае просветите пробирку лучем света, чтобы увидеть его рассеяние (эффект Тиндаля, см. разд. Б.2). Рассеяние света подтвердит присутствие осадка в виде коллоидных частиц. [c.47]

    Строго обоснованный метод определения адгезии до стс пор не разработан из-за большой сложности реальных взаимодействий. Поэтому для сопоставления адгезии битумов используют упрошенный метод, заключающийся в выдерживании в кипящей воде битумно-минеральной смеси и визуальной оценке степени покрытия битумом частиц минерала. [c.25]

    Обзор методов определения функций распределения пребывания частиц сделан Хофманом 2. Там же описаны основные модели прохождения реагента через реактор диффузионная, ячеистая и канальная. Диффузионная модель, описываемая дифференциальным уравнением материального баланса, получена при некоторых упрощающих предположениях (скорость и концентрация реагирующих веществ предполагаются постоянными в каждом сечении). [c.39]

    В процессе анализа структуры все приведенные интегральные характеристики материала рассчитываются по результатам анализа представительного объема и, таким образом, число составных частей фазы, среднее значение поверхностной кривизны, связность и другие характеристики обычно относятся к единице его объема, т. е. являются средними статистическими значениями удельных объемных характеристик. Строго говоря, связность G, рассматриваемая как род гомеоморфных поверхностей, не должна быть подвержена статистическим колебаниям. Однако в природе формирование контактов частиц является статистическим процессом, зависящим от таких стохастических факторов как перемешивание в системе, смачивание, диффузия, растворение и рост частиц фаз, взаимодействие фаз и др., поэтому в принципе возможно рассматривать Gy как статистическую величину. Потребность экспрессного определения связности фаз в многофазных средах в последнее время быстро растет в связи с определяющей ролью этой характеристики в описании и прогнозировании механического поведения структурно неоднородных материалов, выявления структуры многофазных потоков в его объеме. Вместе с тем существующие методы определения Gy до сих пор практически основывались на методе анализа параллельных сечений структуры. В работах [47, 481 предложен иной метод определения статистической характеристики связности на основании простых измерений характеристик одного случайного представительного сечения материала. Разрабатываются также методы стереоскопической оценки Gy. [c.136]

    Существующие методы определения зависимости удельного сопротивления осадка ог ДР позволяют одновременно установить зависимость сопротивления фильтровальной перегородки от ДР (см. главу IV). Однако использование последней зависимости иногда усложняет практические расчеты и не повышает. их точности, так как сопротивление фильтровальной перегородки по своему существу не является стабильной величиной. В процессе фильтрования в перегородку могут проникать твердые частицы суспензии, степень же очистки перегородки от твердых частиц в процессе промывки зависит от многих обстоятельств. [c.37]

    Возможен также метод определения размеров топочного пространства, построенный на базе изучения кинетики реакций и других основных факторов,, дающих возможность выявить время горения топлива, т. е. время пребывания в топке частиц топлива, необходимое для завершения процесса до намеченной полноты горения. В этом случае объем топочной камеры выражается следующим [c.277]

    Прямой метод определения параметров моделей многофазных потоков, в случае многофазных систем или систем с ярко выраженной структурной неоднородностью, когда распределение объема между фазами или неоднородностями неизвестно, анализ структуры потоков индикаторными методами в известной мере затруднен. Трудности анализа функций отклика системы на типовые возмущения по составу потока обусловлены сопутствующими помехами, вызванными такими явлениями, как молекулярная диффузия в поры и капилляры твердых частиц, в пленки и карманы в пространстве между этими частицами, конвективная диффузия в застойных зонах системы, адсорбция и десорбция индикатора на поверхности частиц и стенок, ограничивающих поток и т. д. [c.29]

    Опубликовано несколько методов определения Хц по отдельным коэффициентам теплопроводности частиц и среды (см. работу а также [c.189]

    Наиболее общим методом определения отклонения реального потока от идеального режима является исследование с применением трассирующего вещества. Степень превращения исходного вещества в реакторе с неидеальным потоком может быть рассчитана непосредственно по результатам опытов с использованием трассёра и на основе некоторой модели потока. При этом нужно помнить, что каждая модель отражает действительную картину потока в реакторе с той степенью точности, с которой совпадают функции распределения времени пребывания частиц, полученные для модели и для реального аппарата. Области применения обоих указанных направлений расчета степени превращения веществ в реакторе с неидеальными условиями протекания жидкости указаны в табл. 36. [c.294]


    Одним из методов определения или учета фактора формы может быть следующий по экспериментальным данным скорости витания частицы Vв по уравнениям (1.60) или (1.61) вычисляют итерационным методом бэ, величина которой используется в дальнейших расчетах. [c.25]

    Наряду с качественными и количественными методами определения механических примесей существуют методы определения ситового состава частиц. Один из них [156] основан на применении анализатора — электронного счетчика частиц. Прибор автоматически регистрирует сотни тысяч частиц размером более 1 мкм. Для классификации загрязнений по размерам частиц образец топлива прокачивают через счетчик несколько раз. Общая длительность анализа 1 ч. Дисперсионный состав можно определить также с помощью установки, основанной на измерении интенсивности свечения конуса Тиндаля, которая находится в прямой зависимости от степени дисперсности микрозагрязнений [157]. Для автоматического контроля дисперсионного состава твердых микрочастиц разработана ультразвуковая установка [158]. С помощью электронного счетчика подсчитывается и автоматически записывается число изображений микрочастиц определенно-,го размера. Установка может определять дисперсионный состав т вердых загрязнений в статических и динамических условиях. Перед работой установку калибруют. [c.177]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Твердые частицы и жидкие капельки имеют различное название зола (грит), пыль, дым, копоть, туман, аэрозоль или смок. Ниже и на рис. 3 приведено распределение частиц по различным категория.м в зависимости от их приблизительных размеров, основных методов определения размеров и от визуального эффекта присутствующих частиц  [c.22]

Рис. В-3. Классификация атмосферных загрязнений по размерам и основные методы определения размеров частиц [779]. Рис. В-3. <a href="/info/1462178">Классификация атмосферных</a> загрязнений по размерам и <a href="/info/609784">основные методы определения</a> размеров частиц [779].
    В этой главе обсуждаются методы измерения температуры газа, скорости газового потока и точки росы, размеров проб газов, а также методы расчета некоторых параметров. Кроме того, будут рассмотрены основные методы определения размеров твердых частиц, так как детальное рассмотрение этого вопроса выходит за рамки настоящей книги. [c.58]

    Методы определения размеров дисперсных частиц в дисперсных системах весьма разнообразны и основываются иа самых различных физических принципах. Условно их можно разделить на прямые и косвенные. При проведении прямых измерений непосредственно регистрируется характерный размер неоднородности в исследуемой среде. Поверхность раздела отделяет дисперсионную среду и дисперсную фазу, характеризующихся различными физическими постоянными диэлектрической проницае- [c.92]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]

    Первым обширным исследованием, проведенным с помощью масс-спектрометра, была работа Лейфера и Ури [23], которые изучали пиролиз диметилового эфира и ацетальдегида.Хотя им и не удалось обнаружить радикалы, но они смогли показать, что промежуточным продуктом разложения димети лового эфира является формальдегид, и проследить его концептрацию. Более успешной была попытка Эльтентона [24, 25], которому удалось сконструировать установку, способную обнаружить свободные радикалы при пиролитических реакциях и в пламенах даже нри высоких давлениях (около 160 мм рт. ст.). Он также смог обнаружить присутствие радикалов СНз при пиролизе углеводородов, радикалов СНг из СНгКг, а также СНО и СНз при горении СН в кислороде. Метод определения основан в принципе на том, что энергия электронов, необходимая для ионизации радикалов, меньше энергии электронов, необходимой для образования ионизированных частиц из самих исходных молекул. Это дает возможность определять малые количества радикалов в присутствии больших количеств соединений, собственные спектры которых затмевают спектры радикалов. [c.97]

    Весьма инетересное применение метода ГПХ нашли авторы работы [32], которые оценили, как исключаются асфальтены из пор катализатора, применяемого при каталитическом гидрообессеривании остатков. Образец катализатора с известным распределением по размерам пор, погружают в нефтяной остаток с известным содержанием асфальтенов. Объем взятой навески остатка в 3 раза превышает общий объем пор взятой навески катализатора. Катализатор с остатком вьщерживают в автоклаве при постоянной температуре в течение 4 ч до установления равновесия, перемешивая каждые 1,5 ч. Для исключения возможности окисления воздухом свободное пространство автоклава заполняется азотом. После достижения равновесия жидкость, не проникшая в поры катализатора (наружная), сливают через сетку и анализируют методом ГПХ с получением распределения по размерам молекул и частиц и определением содержания металлов (ванадия, никеля). Жидкость, проникшая в поры катализатора (внутренняя), экстрагируется из катализатора последовательно бензолом и смесью метанола и бензола (1 1). После отгонки растворителя, оставшуюся жидкость анализируют так же, как и наружную часть остатка. [c.38]

    Задача значительно усложняется для частиц, имеющих неправильную форму. Методы определения средних размеров (среднего геомёт-рического, арифметического и других) по экспериментальным данным приводятся в работе [4]. [c.22]

    Способы определения среднего размера твердых частиц довольно просты. Надежного метода определения размеров жидких капель все еще нет. Трудность заключается в том, что размеры капель я идкости непрерывно изменяются в процессе перемещепия их по трубопроводам. Многие частицы пе имеют электрического заряда заметной величины, поэтому при сепарации, основанной на принципе электростатического осаждения, такой искусственно. Все частицы, содержащиеся в газе, [c.86]

    Микроскопические методы определения гранулометрического состава загрязнений, содержащихся в нефтяных маслах, получили весьма широкое распространение вследствие ряда преимуществ по сравнению с седимен-тационными более высокой точности возможности непосредственного подсчета доли частиц определенного размера (например, от 1 до 5 мкм, от 5 до 10 мкм и т. д.), а не их массы независимости результатов анализа от плотности загрязнений и др. [c.30]

    Перспективный метод изучения процессов обмена анергии был создан Норришем [440] и Портером [462]. Сущность этого Д18тода, называемого методом импульсного фотолиза, заключается в том, что исследуемый газ облучается в течение короткого времени (несколько микросекунд) интенсивным (тысячи джоулей источником света непрерывного спектра. В результате первичного или вторичных фотохимических процессов возникают радикалы или молекулы на различных колебательных уровнях. Спектроскопическая регистрация временного изменения концентраций этих частиц в определенных квантовых состояниях, обусловленная передачей энергии при столкновениях, дает возможность изучения колебательной релаксации. [c.79]

    Экспериментальное определение пористости слоя твердых частиц не представляет затруднений как прямыми методами — пикпометрическими, смачиванием частиц парафином и т. п., так и косвенными — например, с помощью аэродинамического моделирования. Большинство методов определения пористости твердых и сыпучих материалов, разработанных рядом отечественных и зарубежных ученых, подробно рассмотрены [4]. [c.28]

    Кроме описанных методов определения механических примесей в США имеется стандартный метод (ASTM D 312) подсчета и измерения частиц на мембранном фильтре с помощью микроскопа. [c.172]

    В течение многих десятилетий велась дискуссия между сторонниками теории Риттингера и сторонниками теории Кирпичева — Кикка. В ходе этой дискуссии сторонники теории Риттингера провели многочисленные исследования по разработке методов определения поверхности сыпучих материалов и установлению связи между поверхностью и размером частиц материала, а также определению удельной работы измельчения. В этих исследованиях доказывалась справедливость предположения о пропорциональности работы измельчения вновь образованной поверхности. [c.27]

    В иаституте Баттель (Франкфурт) [294] был разработан аэрозольный спектрометр, использующий малые углы (<7,5°) рассеяния лазерного (Не—Йе) пучка. Вследствие узкой полосы рассеяния (от дифракционной части рассеянного света) результат не зависит от формы и оптических свойств частиц. Метод применим при концентрации до 10 частиц в 1 см , поскольку объем, используемый для измерения, равен 0,01 мм Нижний предел определения размеров частиц этим методом равен 0,17 мкм, а верхний предел —около 1,5 мкм. Эти исследователи разработали также прибор, который можно использовать для анализа высококонцентрированных частиц (5-10 частиц в 1 см ) в потоке. [c.99]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]


Смотреть страницы где упоминается термин Частицы метод определения: [c.70]    [c.39]    [c.82]    [c.262]    [c.3]    [c.177]    [c.148]    [c.86]    [c.291]    [c.148]    [c.29]    [c.78]    [c.55]    [c.506]   
Адсорбция, удельная поверхность, пористость (1970) -- [ c.44 , c.84 , c.105 ]




ПОИСК







© 2025 chem21.info Реклама на сайте