Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические фторирование

    Введение фтора в молекулы органических соединений оказывает очень сильное влияние на их физико-химические свойства. Фторированием углеводородов получают соединения, в которых атомы [c.151]

    Электрохимическое фторирование начало развиваться лишь в последнее время, по оно имеет ряд преимуществ по сравнению с только что описанными методами. Сущность его состоит в следующем при электролизе безводного фтористого водорода (с добавлением фторидов металлов для повышения электропроводности) выделяющийся на аноде фтор немедленно реагирует с растворенным или эмульгированным в жидкости органическим веществом. Благодаря протеканию реакций в жидкой фазе при перемешивании, достигается хороший теплоотвод и суы ествуют широкие возможности регулирования процесса. При этом не приходится предварительно получать и очищать молекулярный фтор, который все равно производят в промыщленности методом электролиза. Наилучшие результаты электрохимическое фторирование дает при синтезе перфторзамещенных карбоновых кислот, простых и сложных эфиров, аминов, сульфидов и других соединений, растворимых в жидком фтористом водороде. [c.162]


    Более новым по времени достижением в области фторирования является электролитический процесс замещения в органических соединениях водорода фтором [30]. В этом процессе органическое соединение или растворяется в жидком фтористом водороде, или приводится в контакт с ним и смесь подвергается электролизу при низком потенциале. [c.73]

    Фторированные органические кислоты [c.31]

    Фторопласт-4 не смачивается водой и не набухает в ней. Неизвестен ни один растворитель, в том числе и среди фторированных органических веществ, в котором фторопласт-4 хотя бы набухал. [c.431]

    Действие фтора на органические соединения сопровождается очень большим выделением тепла, которое превышает энергию разрыва связей С—С и С—Н если не принять мер предосторожности, прямое фторирование углеводородов приведет к их глубокому разложению. [c.390]

    Процессы галогенирования различных органических соединений,, особенно углеводородов, имеют большое практическое значение в современной синтетической химии и органической технологии. Введение активных атомов галогена создает повышенную реакционноспособность, что облегчает дальнейшие реакции конденсации, полимеризации, гидролиза и др. Из экономических соображений применяется главным образом хлорирование, но в отдельных случаях прибегают к броми-рованию и иодированию. В последнее время практический интерес приобретают реакции фторирования. Сырьем для галогенирования являются различные природные и технические газы. [c.760]

    При электрохимическом фторировании происходит, как правило, полная замена всех атомов водорода в молекуле органического вещества на фтор, например  [c.223]

    Электрохимическое фторирование проводят при 5—20 °С в стальной аппаратуре. В качестве анодного материала используют никель, реже монель-металл. Большинство органических веществ образует с фтористым водородом электропроводные растворы, поэтому отпадает необходимость введения электропроводящих добавок. Иногда для повышения электропроводности во фтористом водороде растворяют фториды натрия или калия. [c.223]

    Гидрофобными носителями служат различные полимерные вещества. Одним из лучших носителей этого типа считается полимер трифторхлорэтилена, известный под названием фторо-пласт-3 или Ке1-Р. Удачным носителем является та Кже полностью фторированный полимер фторопласт-4, или тефлон. В качестве гидрофобного носителя применяется также ацетилцеллюлоза. В принципе гидрофобным носителем может служить любой полимер, нерастворимый и не набухающий в органических растворителях и приготовленный в виде порошка с необходимой для удержания неподвижной фазы поверхностью. Подобно носителям в газожидкостной хроматографии, в ЖЖХ в качестве носителей могут применяться поверхностно-пористые носители, особенно с контролируемой поверхностной пористостью. [c.217]


    Описанный способ галогенирования органических веществ выгоден по многим причинам он не нуждается в сложной аппаратуре предусматривающей хранение и утилизацию ядовитых и агрессивных веществ обладает высоким санитарным уровнем производства экономичен в потреблении сырья и относительно легко может быть автоматизирован. На сегодня этим способом успешно пользуются при производстве фторорганических соединений фторированных спиртов, фторкарбоновых кислот, фторацетона, фтор-пиридина и др. [c.254]

    Напряжение, при котором начинается выделение фтора в безводном фтористом водороде достигает 8—10 в, и это позволяет вести процесс электрохимического фторирования при 4—6 в без выделения фтора, в безопасных условиях. Обладая высокой диэлектрической постоянной и способностью давать диссоциированные комплексы практически со всеми органическими веществами, имеющими функциональные группы, безводный фтористый водород образует хорошо электропроводящие растворы самых различных органических соединений. Большинство полностью фторированных соединений нерастворимы во фтористом водороде и, обладая значительно большей плотностью, легко отслаиваются от последнего. Железная аппаратура в отсутствии влаги оказывается вполне устойчивой к безводному фтористому водороду и растворам органических соединений в нем, а получившие в последние годы широкое распространение такие материалы, как полиэтилен и фторопласты, позволяют надежно герметизовать рабочую аппаратуру и изолировать токонесущие вводы в электролизер. Это обеспечило вполне безопасную работу, несмотря на высокую агрессивность и низкую температуру кипения (19,5° С) такой электролитической среды. [c.456]

    В статье описывается пиролиз монохлордифторметана без катализатора, в результате которого образуется целый ряд органических фторированных соедииеиий. Наиболее интересным Из продуктов пиролиза является тетрафторэтилен. Опыты пиролиза обы но проводились в реакционной трубке, сделанной из инертного материала при температуре выше 650° С. Было изучено также влияние температуры, давления и продолжительности контакта иа выходы различных продуктов пиролиза. В общем случае относительные количества продуктов пиролиза зависят от давления и степени коиверсии. Тетрафторэтилен является единственным олефнном, выделенным из продуктов пиролиза. Это химически реакционноспособное газообразное вещество, кипящее при—76,3 С при 760 мм ртутного столба, является исходным для синтеза фторированных соединений, применяемых в качестве хладо-агентов. диэлектриков, растворителей, пластмасс и т. д. Был получен ряд соединений, имеющих общую формулу Н(СРг) Си Удалось выделить члены ряда, начиная от Сг До Сц. Все они представляют собой нетоксичные,. хил>ически. устойчивые вещества и получены впервые, за исключением Н(Ср2)гС1. [c.12]

    В этом разделе будет упомянуто о таких способах получения органических фторированных соединений, которые не I могли быть аключены ни ib одну из ранее описанных категорий. [c.107]

    Резины на основе фторкаучуков по стойкости к органическим жидкостям, кислотам и окислителям значительно превосходят резины из всех других каучуков, особенно при высоких температурах [25, 26]. Лишь в кетонах и фторированных растворителях они избирательно набухают. Для фторэластомеров характерна высокая стойкость к атмосферным воздействиям, свету, озону. Фторкау- [c.506]

    За последнее время широкое развитие получает химия фтористых и бромистых органических соединений. При этом значительное внимание уделяется прямому фторированию и бромирова-пию насыщенных углеводородов [142]. [c.124]

    Для удаления взвешенных и гумусовых веществ применяются методы отстаивания в отстойниках и осветлителях любого типа, а также фильтрование в напорных и открытых песчаных фильтрах с предварительной коагуляцией при высоком содержании гумусовых. Для уничтожения органических веществ, планктона и бактериального загрязнения необходимо использовать хлорирование и озонирование, для поддержания pH — подкисление, иодщелачи-вание и фосфатирование для поддержания допустимого содержания фтора — фторирование при недостатке и сернокислотную обработку при избытке для обезжелезивания — аэрацию, коагуляцию, подщелачивание, обработку перманганатом калия и катио-нирование для умягчения поверхностных вод — известковосодовое умягчение для умягчения подземных вод —ионный обмен для обессоливания — ионный обмен, электролиз, дистилляцию и гиперфильтрование. [c.162]

    Примемение. Фтор используют для фторирования органических соединений, синтеза различных хладоагентов (фреонов), получения фторопластов, в частности тефлона, образующегося при-полимеризации тетрафторэтилена. Тефлон характеризуется небольшой плотностью, низкой влагопроницаемостью, большой термической и химической стойкостью, высокими электроизоляционными характеристиками. На тефлон не действуют щелочи и кислоты, даже царская водка. 3)то незаменимый материал при лабораторных исследованиях, для изготовления аппаратуры в производстве особо чистых веществ, применяется в химической, электронной и других отраслях промышленности. В технике используют также фторсодержащие смазки. [c.472]


    Гал(1генированием в широком смысле слова называют все процессы, в результате которых в органические соединения вводятся атомы галогена. В зависимости от вида галогена различают реакции фторирования, хлорирования, бромирования и иодирования. [c.97]

    Как видно из приведенных данных, тепловой эффект уменьшается в ряду р2 > I2 > Вг2 > I2, причем особое место занимают реакци I фторирования и иодирования. Первые сопровождаются очень (ольшим выделением тепла, превышающим энергию разрыва связей С—С и С—Н. Если не принять особых мер, это приведет к глубокому разложению органического вещества, вследствие чего фторирование по технологии значительно отличается от хлорирования и поэтому рассмотрено в отдельном разделе главы. С другой стороны, иодирование протекает с очень небольшим или даже отрицательным тепловым эффектом и, в отличие от реакций с фтором, хлором и бромом, является обратимым. Это наряду с низкой активностью иода как реагента заставляет получать иод-пропзводные другими путями. Впрочем, они производятся в малых масштабах и не принадлежат к продуктам основного органического и нефтехимического синтеза. [c.99]

    Как видно из полученных результатов, хорошей экстрагирующей способностью по отношению к НСЮ обладают кетоны алифатического и циклического строения — МЭК, метилпропилкетон (МПК), циклогексанон (ЦГ), циклопента-нон (ЦП), сложные эфиры органических и неорганических кислот (бутилацетат, этилацетат, ТБФ), степень извлечения которыми при объемном соотношении растворителя к водной фазе 1 2 находится в пределах 91-95%. Введение в молекулу растворителя атома галогена резко снижает экстрагирующую способность (хлорекс, хлоркетоны (ХК), СС14, фторированные соединения). Сказывается, по-видимому, способность галогена оттягивать часть отрицательного заряда с активной группы, за счет чего снижается ее основность. Особенно резко этот эффект сказался при использовании фторсодержащих соединений. Атом фтора, обладающий высокой электроотрицательностью, изменяет распределение электронной плотности в молекуле, снижая или совсем лишая ее основных свойств. [c.58]

    Из реакций непосредственного введения различных галоидов в молекулу парафинового углеводорода только хлорирование имеет важное техническое значение. Бромирование же и йодирование парафинов в промышленном масштабе не проводятся. Такие важные органические фторсодержащие продукты, как фреон-12 (Ср2С12), обычно получают из хлорированных углеводородов, обрабатывая последние неорганическими фтористыми соединениями [1]. Тем не менее автор книги счел необходимым ввести в конце этой главы раздел, обобщающий проведенные во время войны в США работы по получению полностью фторированных соединений методом прямого фторирования насыщенных углеводородов метанового ряда. [c.77]

    Ф т о р И с т ы е а л К И Л ы. Первый фторированный углеводород, те-трафторметан F4, был получен Муассаном. Позднее было синтезировано много других фторсодержащих органических соединений. Некоторые из них по температуре плавления, температуре кипения и другим свойствам близки к соответствующим углеводородам, но отличаются от последних меньшей реакционной способностью. [c.103]

    К реакциям анодного замещения относятся все случаи галоиди-рования хлорирование, иодирование, бромирование и фторирование. Из этих процессов практическое значение имеет только электрофторирование, которое осуществляют электролизом органического вещества во фтористом водороде. [c.223]

    Замена гидроксильных групп на поверхности носителя (для уменьшения их числа) другими атомами и группами — фторированием, хлорированием, фенилированием и др. Наилучшие результаты дает обработка носителей органическими и кремнийорганически-ми соединениями, триметилхлорсиланом, гексаметилдисилазаном, диметилдихлорсиланом и т. д. [c.197]

    Электрохимические методы открывают щирокие возможности для синтеза различных органических соединений. Так, на катоде можно осуществить восстановление двойных и тройных связей, причем соединения с двойными связями часто вступают в реакцию электрохимической димеризации с образованием гидродимеров. Описаны реакции электрохимической гидроциклизации, катодного восстановления нитросоединений, нитрилов и других веществ с различными функциональными группами, катодное отщепление галоидов от галоидорганических соединений. На аноде могут быть окислены разнообразные органические вещества, осуществлены реакции замещения и присоединения, например электрохимическое фторирование  [c.226]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны две последние группы источников тока. В химических источниках тока с апротонными растворителями в качестве анода используют литий, что позволяет достигать значительных ЭДС (до 3—4 В) и высоких значений удельной энергии. В качестве материала катода применяют галогениды, сульфиды, оксиды и другие соединения. Особый интерес представляют катоды ща основе фторированного углерода. Это вещество нестехиометрического состава с общей формулой ( F r)n получают при взаимодействии углерода с фтором при 400—450 °С. При работе такого катода образуются углерод и ион фтора. Разработаны литиевые источники тока с жидкими окислителями (системы SO b — Li и SO2 — Li). Предпринимаются попытки создания аккумуляторов с использованием литиевого электрода в электролитах на основе апротонных растворителей. Литиевые источники тока предназначаются в основном для питания радиоэлектронной аппаратуры, кардиостимуляторов, электрических часов и т. д. [c.266]

    Галогенпроизводныг углеводородов. Данные соединения получают замещением в углеводородах атомов водорода атомами галогенов. Наибольшее практическое значение имеют фтор- и хлорпро-изводныг углеводородов как важные промежуточные продукты органического синтеза. Отличительная особенность галогенпроизводных заключается в их склонности к реакциям замещения галогенов на другие атомы, радикалы или функциональные группы. Это обусловлено повышенной полярностью связи углерод — галоген. Однако при наличии двойной связи у углерода, соединенного с галогеном, происходит упрочнение связи углерод — галоген, так как р-электроны углерода взаимодействуют с неподеленными парами электронов атома галогена. Особенно высокую прочность имеет связь С—Р (энергия связи 473 кДж/моль). Поэтому фторированные углеводороды обладают инертностью и химической стойкостью. Так, например, вещество, имеющее высокую химическую стойкость, политетрафторэтилен — продукт полимеризации тетрафторэтилена р2С=С 2, называемый фторопластом-4 или тефлоном. [c.264]

    Наиболее удачным оказалось предложение применить в качестве носителя другой фторированный полимер — политетрафторэтилен (фторопласт-4, тефлон) [99]. Фторо-пласт-4 позволяет использовать практически любые органические растворители и любые водные растворы вследствие его исключительной химической стойкости. В этом его преимущество перед фторопластом-3, слипающимся в некоторых растворителях (хлороформ), и силиконированным силикагелем, который неустойчив в среде, содержащей фтористоводородную кислоту. Фторопласт-4 является одним из наиболее перспективных носителей для распределительной хроматографии с обращенной фазой. На нем был выполнен ряд разделений с использованием самых разнообразных растворителей ТБФ, диэтилового эфира, изоамилацетата, раствора теноилтрифторацетона (ТТА) в бензоле, алкилфосфорных кислот, TOA, циклогексанс-ла и др. [c.155]

    Электрохимическому фторированию были подвергнуты органические соединения практически всех классов [58]. Почти во всех случаях электролиза наблюдалось образование в результате замещения всех атомов водорода на фтор полностью фторированных соединений, так называемых, перфторсоединений .  [c.457]

    Однако при электролизе органических соединений в безводном фтористом водороде, наряду с фторированием, почти всегда протекают процессы деструкции, связанные с отщеплением функциональных групп и разрушением углеродного скелета молекулы. В связи с этим выходы перфторированных аналогов исходных веществ почти всегда далеки от 100%. Строение исходного органического соединения оказывает существенное влияние на выход неде-структированных продуктов при электрохимическом фторировании. [c.457]

    Увеличение длины цепи органического соединения сопровождается обычно снижением выхода недеструктированных веществ, и при электролизе фторангидрида масляной кислоты выход фторангидрида перфтормасляной кислоты составляет уже 36%. Такая же зависимость выхода от природы исходного продукта наблюдается и при фторировании алкилсульфокислот. В последние годы было показано, что с достаточно высокими выходами фторангидриды перфторкарбоновых кислот могут быть получены при электролизе более доступных исходных соединений, таких как сложные эфиры, спирты, кетоны и т. д. [c.458]

    В настоящее время механизм процесса электрохимического фторирования далеко не ясен. Однако представляются маловероятными предположения о фторирующем действии радикалов фтора за счет разряда фториона и, по-видимому, существенное значение имеет адсорбция органических молекул нil поверхности никеля и образование комплексных высших фторидов никеля на аноде, облегчающих взаимодействие органического соединения с анодом. На катоде с практически 100%-ным выходом по току выделяется водород.,  [c.458]

    Практическое пснользование фтора очень сильно увеличилось за последние годы. Потребляется он главным образом прн фторировании органических соединений (т. е. замены в них водорода на фтор). Процесс этот приобрел большое значение, так как многие фторорганические производные обладают ценными свойствами. [c.188]

    Фторирование углеводородов молекулярным фтором Ра и некоторыми фторидами металлов (AgF2, СоРз). Фтор очень активен в реакциях, поэтому его обычно разбавляют газообразным азотом. При таком фторировании, как правило, все атомы водорода в органическом веществе замещаются на фтор, например  [c.362]


Смотреть страницы где упоминается термин Органические фторирование: [c.173]    [c.4]    [c.46]    [c.160]    [c.260]    [c.292]    [c.121]    [c.130]    [c.460]    [c.246]    [c.398]    [c.316]    [c.278]    [c.563]    [c.456]   
Методы разложения в аналитической химии (1984) -- [ c.255 ]




ПОИСК





Смотрите так же термины и статьи:

ВВЕДЕНИЕ ГАЛОИДА В ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ ОТДЕЛ ПЕРВЫЙ. ФТОРИРОВАНИЕ . Фторирование с помощью фтористых металлов

ИСЧЕРПЫВАЮЩЕЕ ФТОРИРОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ЭЛЕМЕНТНЫМ ФТОРОМ

Исчерпывающее фторирование органических соединений высшими фторидами металлов переменной валентности Стэйси, Д. Т этлоу Фторирование трехфтористым кобальтом

Исчерпывающее фторирование органических соединений высшими фторидами металлов переменной валентности Стэйси, Д. Тэтлоу Фторирование трехфтористым кобальтом

Каталитическое фторирование в органической химии

ПОЛУЧЕНИЕ МАЛОФТОРИРОВАННЫХ ПРОИЗВОДНЫХ ПРЯМЫМ ФТОРИРОВАНИЕМ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ЭЛЕМЕНТНЫМ ФТОРОМ

Примеры фторирования органических соединений четырехфтористой сеСинтез четырехфтористой серы из двухлористой серы и фтористого натрия при атмосферном давлении

Фторирование других органических соединений

Фторирование органическими фтороксисоединениями

Фторирование органическими фторпроизводным

Фторирование органических веществ в жидкой фаз

Фторирование органических веществ в жидкой фазе в пиридине

Фторирование органических веществ в жидкой фазе в фторпиридине

Фторирование органических веществ в паровой фазе

Фторирование органических веществ в твердой фазе

Фторирование органических молекул

Фторирование органических соединени

Фторирование органических соединений

Фторирование органических соединений нейтральными реагентами

Фторирование органических соединений элементарным фтором. Д. Теддер Теоретические основы фторирования

Электрохимическое фторирование органических соединений



© 2025 chem21.info Реклама на сайте