Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов отходящих газов

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    В целом методы нейтрализации диоксида серы обеспечивают высокую степень очистки газа. Недостатки этих методов — значительные затраты на оборудование и обслуживание (точную регулировку подачи компонентов, поддержание оптимальной pH поглотительного раствора, выделение конечного продукта), снижение температуры газа, что ведет к ухудшению рассеивания, п образование во многих случаях твердых отходов, идущих в отвал. [c.60]

    Для того чтобы метод очистки газа от сероводорода был технически и экономически целесообразен, т. е. имел промышленное значение, важно не только найти реагент, который удалял бы сероводород из газа, необходимо также, чтобы из новых соединений, полученных в результате взаимодействия данного реагента с сероводородом, можно было без особых трудностей и больших потерь вновь получить первоначальный реагент для повторного (многократного) направления на очистку газа. Большое экономическое значение имеет также возможность получения при очистке газа ценных отходов (большей частью в виде серы). [c.219]

    Биогаз, полученный анаэробным разложением отходов, содержит метан [ 60% (об,)] и диоксид углерода [ 40% (об,)]. В газе присутствуют сероводород, аммиак, пары воды теплотворная способность его невысока— 19,5— 19,8 МДж/м После очистки и осушки газ должен содержать не менее 98% (об,) СН4 (теплотворная способность не менее 33,0 МДж/м ), концентрация Нг8 не должна превышать (3—5) 10 % (3—5 млн ). [c.302]

    Щелочной метод мало пригоден для очистки газов с значительным содержанием СО2 и H2S, так как при этом протекают побочные реакции с образованием соды, что увеличивает расход растворителя и порождает проблему утилизации отходов. [c.199]

    Гидрокрекинг является одним из наиболее экологически чистых процессов нефтепереработки. В комплекс гидрокрекинга, как правило, входят установки очистки газов от сероводорода, регенерации кислых стоков и производства серы (серной кислоты), позволяющие полностью регенерировать и утилизировать технологические отходы. Топливом для печей служит очищенный от сероводорода собственный газ процесса. [c.287]

    Анализ работы установок огневого обезвреживания [5.29, 5.62, 5.63] показывает при обезвреживании в печах типа ОС твердых, жидких и газообразных отходов, содержащих только органические соединения, можно обеспечить санитарные требования при обезвреживании отходов, содержащих неорганические и органические соединения, в результате переработки которых образуются минеральные соли или соединения галогенов, серы, фосфора, установки должны быть снабжены системами очистки газов утилизация теплоты газов возможна только через стенку аппаратов [5.62, 5.71]. [c.499]


    Однако классификация процессов очистки газов от сероводорода в зависимости от свойств применяемого поглотителя без учета процессов восстановления его свойств, утилизации отходов и вида конечных продуктов превращения сероводорода не дает полного представления [c.43]

    Печи с топками кипящего слоя для сжигания отходов имеют футерованный огнеупором сосуд, с гранулами инертного материала, через который продувают газы для создания кипящего слоя. В слой щнековым транспортером подают отходы для сжигания. Горячие газы, пройдя кипящий слой, поступают в котел-утилизатор, а затем в систему очистки газа. Для предварительного нагрева слоя до требуемой начальной температуры предусмотрены горелки. Вследствие хорошего контакта горячих газов с отходами, подвергаемыми сжиганию, избыток воздуха обычно составляет лишь 40% от требуемого стехиометрического количества. [c.142]

    Метод основан на промывке газа жидкостью, обычно водой, при возможно более развитой поверхности контакта фаз и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Применяется для улавливания частиц пыли, золы и тумана любых размеров и служит наиболее распространенным и надежным методом заключительной стадии механической очистки газов. Недостаток — большие объемы жидких отходов (шлама) [c.231]

    При рациональной переработке нефти никаких отбросов производства не должно быть, а потери должны быть минимальны. Все сырье можно использовать полезно, получив, кроме основных, ряд добавочных и побочных продуктов. К сожалению, на некоторых заводах это дело еще находится в зачаточном состоянии и мы выбрасываем без пользы многие десятки и сотни тысяч тонн материалов, которые можно перерабатывать на полезные продукты заводские газы, отходы очистки нефтепродуктов (кислые гудроны, отработанные земли, щелочные отходы), сернистые вещества (в газах) и многие другие. Кроме того, мы теряем много и основных ведущих нефтепродуктов [c.419]

    С верха колонны отходят газ и пары легкого масла, которые охлаждаются в конденсаторе 12 и разделяются в газоотделителе. С низа колонны отходит бурое масло. Из легкого масла перегонкой, очисткой и повторной ректификацией получают ароматические углеводороды. [c.51]

    Многие промышленные установки при отсутствии соответствующих методов очистки загрязняют воздух пахучими или горючими соединениями ("дымами"). Ограничимся лишь некоторыми примерами. Отходы газа при производстве битума или асфальта содержат примеси используемых в процессе альдегидов и пахучих веществ. При получении формальдегида некоторые горючие материалы остаются в отходящих газах. В литографских и печатных цехах воздух загрязнен парами растворителей и смолистыми веществами. При получении фталевого [c.169]

    Седиментация имеет большое практическое значение. Так, очистка питьевой воды от взвешенных частиц отстаиванием (осветление) происходит в результате седиментации. Ее широко используют и для очистки газообразных отходов производства от аэрозольных частиц (пыль, сажа, влага). С целью ускорения седиментации очищаемый газ подвергают воздействию искусственного силового поля, создаваемого в аппаратах, называемых циклонами (рис. VI.5). На таком же принципе проведения седиментации в искусственном силовом поле основаны очистка нефти и нефтепродуктов от эмульсионной влаги центрифугированием и выделение сливок из молока в сепараторах. Центрифугирование широко применяют в аналитической практике для ускорения отделения осадков. [c.275]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Важнейшие тенденции развития производства серной кислоты контактным способом Г) интенсификация процессов проведением их во взвешенном слое (печи и контактные аппараты КС), применением кислорода, производством и переработкой концентрированного газа, применением активных катализаторов 2) упрошение способов очистки газа от пыли и контактных ядов (более короткая технологическая схема) 3) увеличение мощности аппаратуры 4) комплексная автоматизация производства 5) снижение расходных коэффициентов по сырью и использование в качестве сырья серусодержащих отходов различных производств (газов цветной металлургии, сероводорода, кислого гудрона и т. д.) 6) комбинирование нитрозного способа с контактным путем установки однослойных контактных аппаратов КС для частичного окисления сернистого ангидрида перед башнями нитрозных систем 7) обезвреживание отходящих газов. [c.315]


    Схемы с однократным использованием поглотителя находят применение также при очистке газов от вредных примесей, когда поглотитель дешев, а извлеченный компонент не представляет ценности или получается в незначительных количествах. В этом случае целесообразнее сбрасывать использованный поглотитель как отход или применять его для каких-либо других целей, чем проводить дорогостоящий процесс десорбции. Примером может служить санитарная очистка газов, содержащих малые количест- [c.661]

    Имеется ряд эффективных способов очистки отходящих газов с использованием отходов (шламов) различных производств. Например, очистку газов от диоксида серы ведут обработкой газового потока суспензией красного шлама (отход процесса Байера), состоящего из окислов кремния, железа, титана, алюминия и натрия. Степень очистки газа от диоксида серы > 90%. [c.249]

    Сухой очистки газов в схему установки непосредственно за топкой. Изучение процесса сжигания твердых радиоактивных отходов в слое производилось на образцах, содержащих 5г и Ни . [c.101]

    При термическом обезвреживании органических отходов с присутствием соединений галогенов, фосфора, серы, азота процесс усложняется. В этом случае в продуктах сгорания могут накапливаться хлористый водород, оксиды серы и азота и возникает необходимость очистки газов перед выбросом их в атмосферу. [c.42]

    В различных разделах настоящей книги рассмотрены некоторые методы адсорбционной защиты окружающей среды защита воздушного бассейна от сернистого ангидрида (с. 271—282), рекуперация летучих растворителей и углеводородов из отходящих промышленных газов (с. 268—271), защита атмосферы в районах заводов вискозного волокна (с. 282—288), очистка сточных вод (с. 290— 294). Фактический материал, приведенный в других разделах, может послужить основой для создания процессов очистки вредных отходов многочисленных производств различных отраслей промышленности. [c.474]

    Достоинством биологической очистки газа является гибкость технологии, отсутствие отходов, минимум затрат на химреагенты. Недостатки невысокая удельная производительность установок, высококоррозионные свойства абсорбента. [c.445]

    Схема установки с однократным использованием абсорбента (рис. 16-32) применяется тогда, когда в результате абсорбции получают готовый продукт или полупродукт, поэтому регенерации абсорбента не требуется. Схемы с однократным использованием абсорбента часто применяют также при очистке газов от вредных примесей. При этом поглотитель должен быть недорогим, а концентрация поглощаемого газа-незначительной. Тогда использованный поглотитель можно не десорбировать, а применять для каких-то целей или сбрасывать его как отход (если это допустимо по санитарным нормам). [c.96]

    Поскольку для каталитической очистки газов в стационарном режиме с учетом 75% рекуперации тепла отходящих газов температура адиабатического разогрева газов должна б1ыть не менее 150°С, при обезвреживании отходов с низким содержанием органических веществ необходим подвод топлива, нанример природного газа. Расход природного газа для исходных смесей с температурой адиабатического разогрева О, 10, 50, 100, 150°С составляет соответственно 4,88 4,55 3,25 1,53 и 0,0 м на 1000 м газообразных отходов. При исиользовании метода каталитического обезвреживания в нестационарном режиме расход топлива необходим только для переработки отходов с температурой адиабатического разогрева ниже 20°С. [c.179]

    Эиергохим. переработка дре веси и ы-газифика-ция древесины в газогенераторах или в топках-генераторах с выделением уксусной к-ты, древесной смолы и др. в процессе очистки газа. Очищенный газ применяют для сжигания в топках котельных или в двигателях внутр. сгорания. Энергохим. переработка позволяет использовать древесные отходы любых пород и любой формы вплоть до лесосечных отходов. Эффективность газификации древесины можио повысить в присут. катализаторов при высоком давлении с получением преим. алканов С2-С5. [c.587]

    Очистка газа от примесей осуществляется обычно в небольшой башне, изготовленной из плит песчаника или гранита эта башня насажена коксом или керамическими кольцами. Вытекающая из башни грязная соляная кислота, содержащая 8—10% серной кислоты, является отходом производства. Охлаждение очищенного хлористого водорода производится в керамических холодилышках и в последовательно расположенных керамических сосудах, орошаемых в летнее время снаружи холодной водой. [c.591]

    Рассмотрены социально-экономические и теоретические аспекты охраны воздушного и водного бассейнов, земной поверхности от загрязнений предприятиями нефтеперерабатывающей и нефтехимической промышленности. Систематизированы и описаны современные методы очистки газов и сточных вод, обезвреживания и утилизации тверд1.1 п жидких отходов. Рассмотрены принципы создания безотходных и малоотходных производств. Изложены экологические аспекты примсисння химических продуктов из углеводородов нефти п газа. [c.2]

    Среднестатистическая величина валового общественного продукта на душу населения Д [5.50] = 4000 руб/год. Показатели, учитывающие степень загрязнения воздушной среды П = и воды водоемов П =. Условные затраты на обезвреживание отходов стоимость сжигания кубовых остатков в печах ОС 75 руб/т, газов 50 руб/т, твердых остатков 30 руб/т стоимость очистки газов 0,3 руб/м , очистки стоков от органических соединений 2 руб/м стоимость переработки минерализованных стоков 8 руб/м В процессе переработки отходов получается 145,6 т/год Na l, условная цена реализации которого 10 руб/т. [c.512]

    Lux mixture люксмасса (отход производства А1(0Н)з из боксита, содержащий 51% FejOg, известь и древесные опилки масса для очистки газов и носитель катализатора) [c.642]

    Выбор того или иного метода очистки от токсичных газов и паров производится с учетом конкретных условий производства. Экономичность очистки возрастает при использовании отходов производства в качестве очистных реагентов (абсорбента, адсорбента, катализатора), а также при регенерации ценных веществ из отходящих газов, например рекуперации паров бензина или других растворителей, регенерации ртути и других металлов и т. п. Как правило, концентрации примесей в промышленных выхлопах малы, а объемы очищаемых газов велики, ноэтому для их обработки сооружают сложные и громоздкие очистные установки, которые пока еще недостаточно рентабельны. [c.237]

    В электрическом поле высокого напряжения частицы аэрозолей подвергаются электрофорезу, причем, достигнув электродов, они теряют свой заряд и осаждаются. Электрофорез аэрозолей находит ряд важнейших практических применений для очистки газов от взвешенных в них твердых и л идких частиц. В одних случаях такая очистка бывает необходима для возможности проведения производственных процессов (например, очистка SOo при контактном получении H2SO4), в других —при ее помощи улавливают различные уносимые отходящими газами в виде пыли ценные продукты. Наконец, электрофорез аэрозолей очень важен с санитарно-гигиенической точки зрения, так как позволяет очищать выпускаемые на воздух газы от вредных отходов производства." [c.333]

    Изделия порошковой металлургии получают из металлических порошков, в ряде случаев с добавкой неметаллических компонентов, например, графита, карбидов, с последующим прессованием и спеканием полученных композиций. Для получения пористых изделий в исходную композицию вводят компоненты, которые затем выплавляют или выжигают. Производство деталей по такой технологии практически не имеет отходов, но требует сложной технологической оснастки. Используют как антифрикционный подшипниковый материал (железографитовый, железомеднографитовый, металлофторо-пласт) в виде втулок или вкладышей, не требующих подвода смазочного материала, в качестве фильтрующих элементов (из никеля, титана, углеродистой стали, коррозионно-стойкой стали в зависимостн от свойств среды) для очистки жидкостей и газов и в виде фрикционных материалов с повышенными коэффициентами трения, износо- и теплостойкостью. [c.101]

    Исследования по сжиганию радиоактивных отходов, по очистке отходящих газов от радиоактивных аэрозолей и по концентрированию радиоактивных, редких и рассеянных элементов в золе сжигаемого материала показали возможность эффективной переработки горючих материалов [1—3]. Удовлетворительные результаты дала очистка газообразных продуктов сгорания от радиоактивных аэрозолей в многоступенчатых системах, в которых применялись аппараты мокрой очистки газов. Однако до настоящего времени ряд важных сторон этой проблемы (например, рациональная организация процесса горения с минимальным химическим и механическим недожогом, величина уноса золы и фиксация радиоактивных изотопов в золе сжигаемого матариала) исследован еще недостаточно. Как правило, твердые радиоактивные отходы сжигаются в слое. [c.97]

    В тех случаях, когда представляется возможным первичные продукты энергохимического комплекса перерабатывать централизованным порядком, целесообразно на предприятиях, где дрёвесные отходы и дрова сжигаются в топках-генераторах, организовать улавливание этих продуктов в виде суммарного конденсата. Для указанной цели могут быть использованы кислотостойкие центробежные смолоотделители типа ВВД. Перед ними должны быть установлены холодильники для понижения температуры сырого газа (примерно до 65° С), а за ними — пенно-пленочный сепаратор для доулавливания химикатов. При такой схеме очистки газа в суммарный конденсат перейдет около 90% смол и 80% летучих кислот, содержащихся в сыром газе на выходе из швельшахты. Улавливаемый суммарный конденсат нужно будет отвозить на централизованный завод и там перерабатывать на товарные продукты. В этих условиях можно будет расширить ассортимент вырабатываемых продуктов и повысить их качество. [c.165]

    При электровозгонкс фосфора отходами произподства являются газ, содержащий 75—80% СО, феррофосфор, силикатный шлак, пыль из электрофильтров н шлам, получаемый при отстаивании жидкого фосфора в отстойниках. Отходянщй газ используют как топливо в самом производстве (для сушки и прокалки компонентов шихты, для обогрева электрофильтров). После дополнительной очистки газ частично может быть использован для химических синтезов. [c.251]

    Выбор процесса очистки газа от сернистых соединений определяется экономикой и зависит от многих факторов, основными из которых являются состав и параметры сырьевого газа, требуемая степень очпсткп п область использования товарного газа, наличие и параметры энергоресурсов, отходы ироизводства и др. [c.250]


Смотреть страницы где упоминается термин Очистка газов отходящих газов: [c.476]    [c.208]    [c.476]    [c.128]    [c.501]    [c.101]    [c.101]    [c.179]    [c.545]    [c.612]    [c.208]    [c.77]    [c.246]    [c.437]   
Технология серной кислоты (1971) -- [ c.132 , c.265 , c.368 ]




ПОИСК





Смотрите так же термины и статьи:

АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ПЕРЕРАБОТКИ ГАЗОВ НА ПРЕДПРИЯТИЯХ ЦВЕТНОЙ МЕТАЛЛУРГИИ ПРОИЗВОДСТВО ЭЛЕМЕНТАРНОЙ СЕРЫ ПРОИЗВОДСТВО МИНЕРАЛЬНЫХ УДОБРЕНИЙ В ЦВЕТНОЙ МЕТАЛЛУРГИИ САНИТАРНАЯ ОЧИСТКА ОТХОДЯЩИХ ГАЗОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ Водный способ

Абсорбционная очистка газов выделение отходов

Азотная кислота, производство очистка отходящих газов

Аппаратурно-технологическое оформление глубокой термокаталитической очистки отходящих газов с использованием катализаторных покрытий

Башни очистка отходящих газов

Катализаторы очистки отходящих газов

Контактная серная кислота, производство очистка отходящих газов

Методы очистки отходящих газов

Мухутдинов Р.Х., Самойлов Н.А. Теоретические проблемы и аппаратурное оформление термокаталитической очистки отходящих газов от примесей органических веществ

Обезвреживание отходящих газов установок адсорбционной очистки жидких парафинов и каталитического крекинга

Определение хлористого водорода и серной кислоты в орошающих жидкостях сушильной башни, моногидратного абсорбера и башен узла очистки отходящих газов

Отходящие газы башенных систем, очистка

Отходящие, газы очистка

Очистка газа от брызг и тумана. Обезвреживание отходящих газов

Очистка от пыли отходящих газов в производстве минеральных удобрений

Очистка отходящего газа печей Клауса. Процесс Сульфрин

Очистка отходящих газов

Очистка отходящих газов в отделениях концентрирования серной кислоты

Очистка отходящих газов в производстве минеральных удобрений

Очистка отходящих газов в производстве хромпика

Очистка отходящих газов и нейтрализация сточных вод

Очистка отходящих газов от S02 и тумана серной кислоты

Очистка отходящих газов от двуокиси серы водой

Очистка отходящих газов от пыли и тумана

Очистка отходящих газов предприятий различных отраслей

Очистка отходящих газов установок Клауса от сероводорода на блочных катализаторах

Очистка сероводорода и диоксида серы, содержащихся в отходящих газах

Очистка сточных вод и отходящих газов производства карбамида от вредных веществ

Очистка хлористого водорода из отходящих газов

Расчет оптимальных параметров процесса очистки горячих отходящих газов

Расчет оптимальных параметров процесса очистки холодных отходящих газов

Расчет очистки отходящих газов

Санитарная очистка отходящих газов

Схема очистки отходящих газов, кислотно-каталитической

Схема переработки очистки отходящих газов фирма Дави

Технологическая схема очистки отходящих газов на силикагеле

Усовершенствование процессов очистки отходящих газов с установок Клауса



© 2025 chem21.info Реклама на сайте